Quantum-chemical simulation of molecular hydrogen abstraction from the ZnMg(BH4)4 ⋅ 4NH3 bicationic complex

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the framework of the cluster approach using the 6-31G* basis set and the hybrid density functional (B3LYP), was modeled successive abstraction of H2 from the [ZnMg(BH4)4 4NH3] and [Zn2Mg2(BH4)8⋅8NH3] complexes. It was found that to start the dehydrogenation process, it is necessary to overcome the energy barrier of ~1.25 eV, then the process proceeds with the release of energy until about 70% of the available H2 is extracted, for a higher degree of conversion additional energy costs will be required. The cleavage of H2 molecules occurs through a number of intermediate structures of varying complexity with the significant participation of metal cations and the formation of fragments of chains based on B-N bonds containing fragments of N-H and B-H, which can be detected by IR spectroscopy, when dehydrogenation is stopped.

About the authors

A. S. Zyubin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia

T. S. Zyubina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia

O. V. Kravchenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia; Chernogolovka, Moscow region, 142432 Russia

M. V. Solovev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia

V. P. Vasiliev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia; Chernogolovka, Moscow region, 142432 Russia

A. A. Zaitsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia

A. V. Shikhovtsev

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry; Center of Hydrogen Energy (Sistema PJSFC)

Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia; Chernogolovka, Moscow region, 142432 Russia

Y. A. Dobrovol'sky

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry; Center of Hydrogen Energy (Sistema PJSFC)

Author for correspondence.
Email: aszyubin@bk.ru
Chernogolovka, Moscow region, 142432 Russia; Chernogolovka, Moscow region, 142432 Russia

References

  1. Ritter A., Ebner A.D., Wang J., Zidan R. // Mater. Today. 2003. V. 6. P. 18.
  2. Schlapbach L., Zuttel A. // Nature. 2001. V. 414. P. 353.
  3. Züttel A. // Mater. Today. 2003. V. 6. P. 24.
  4. Orimo S.-I., Nakamori Y., Eliseo J.R. et al. // Chem. Rev. 2007. V. 107. P. 4111.
  5. Ouyang L., Chen K., Jiang J. et al. // J. Alloys Compd. 2020. V. 829. P. 154597.
  6. Sakintuna B., Lamari-Darkrim F., Hirscher M. // Int. J. Hydrogen Energy. 2007. V. 32. P. 1121.
  7. Diwan M., Diakov V., Shafirovich E., Varma A. // Int. J. Hydrogen Energy. 2008. V. 33. P. 1135.
  8. Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087.
  9. Richter B., Ravnsbæk D.B., Tumanov N. et al. // Dalton Trans. 2015. V. 44. P. 3988.
  10. Paskevicius M., Jepsen L.H., Schouwink P. et al. // Chem. Soc. Rev. 2017. V. 46. P. 1565.
  11. Wu R., Ren Z., Zhang X. et al. // J. Phys. Chem. Lett. 2019. V. 10. P. 1872.
  12. Kravchenko O.V., Kravchenko S.E., Semenenko K.N. // J. Gen. Chem. USSR. 1990. V. 60. P. 2641.
  13. Johnson S.R., David W.I.F., Royse D.M. et al. // Chem. Asian J. 2009. V. 4. P. 849.
  14. Zhao S., Xu B., Sun N. et al. // Int. J. Hydrogen Energy. 2015. V. 40. P. 8721.
  15. Zavorotynska O., El-Kharbachi A., Deledda S. et al. // Int. J. Hydrogen Energy. 2016. V. 41. P. 14387. http://dx.doi.org/10.1016/j.ijhydene.2016.02.015
  16. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2016. V. 61. P. 731. https://doi.org/10.1134/S0036023616060231
  17. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 201. https://doi.org/10.1134/S0036023618020237
  18. Solovev M.V., Chashchikhin O.V., Dorovatovskii P.V. et al. // J. Power Sources. 2018. V. 377. P. 93. https://doi.org/10.1016/j.jpowsour.2017.11.090
  19. Guo Y., Xia G., Zhu Y. et al. // Chem. Commun. 2010. V. 46. P. 2599. https://doi.org/10.1039/B924057H
  20. Chu H., Wu G., Xiong Z. et al. // Chem. Mater. 2010. V. 22. P. 6021. https://doi.org/10.1021/cm1023234.
  21. Guo Y., Yu X., Sun W. et al. // Angew. Chem. Int. Ed. 2011. V. 50. P. 1087. https://doi.org/10.1002/anie.201006188.
  22. Vasiliev V.P., Kravchenko O.V., Soloviev M.V. et al. // Int. J. Hydrogen Energy. 2022. V. 47. P. 35320. https://doi.org/10.1016/j.ijhydene.2022.08.100.
  23. Zhu Y., Shen S., Yang X-S. et al. // ACS Sustainable Chem. Eng. 2023. V. 11. P. 8931. https://doi.org/10.1021/acssuschemeng.3c01073.
  24. Solovev M.V., Vasiliev V.P., Shilov G.V. et al. // Russ. Chem. Bull. 2024. V. 73. P. 906. https://doi.org/10.1007/s11172-024-4204-z.
  25. Yang Y., Liu Y., Zhang Y. et al. // J. Alloys Compd. 2014. V. 585. P. 674. http://dx.doi.org/10.1016/j.jallcom.2013.09.208
  26. Soloveichik G., Her J.-H., Stephens P.W. et al. // Inorg. Chem. 2008. V. 47. P. 4290. https://doi.org/10.1021/ic7023633
  27. Guo Y., Wu H., Zhou W., Yu X. // J. Amer. Chem. Soc. 2011. V. 133. P. 4690. http://dx.doi.org/10.1021/ja1105893
  28. Yang Y., Liu Y., Li Y. et al. // Chem. Asian J. 2013. V. 8. P. 476. https://doi.org/10.1002/asia.201200970
  29. Yang Y., Liu Y., Li Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 16326. http://dx.doi.org/10.1021/jp404424m
  30. Jepsen L.H., Ley M.B. et al. // Chem-Sus Chem. 2015. V. 8. P. 1452. https://doi.org/10.1002/cssc.201500029
  31. Yan Y., Dononelli W., Jorgensen M. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. P. 9204. https://doi.org/10.1039/d0cp00158a
  32. Chen X., Yu X. // J. Phys. Chem. C. 2012. V. 116. P. 11900. http://dx.doi.org/10.1021/jp301986k
  33. Yuan P.-F., Wang F., Sun Q. et al. // Int. J. Hydrogen Energy. 2013. V. 38. P. 2836. http://dx.doi.org/10.1016/j.ijhydene.2012.12.075
  34. Wang K., Zhang J.-G., Lang X.-Q. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 7015. https://doi.org/10.1039/C5CP06808H
  35. Chen X., Li R., Xia G. et al. // RSC Adv. 2017. V. 7. P. 31027. https://doi.org/10.1039/c7ra05322c
  36. Chen X., Zou W., Li R. et al. // J. Phys. Chem. C. 2018. V. 122. P. 4241. https://doi.org/10.1021/acs.jpcc.8b00455
  37. Vasiliev V.P., Solovev M.V., Kravchenko O.V. et al. // J. Alloys Compd. 2024. V. 1008. P. 176732. https://doi.org/10.1016/j.jallcom.2024.176738.
  38. Nickels E.A., Jones M.O., David W.I.F. et al. // Angew. Chem. Int. Ed. 2008. V. 47. P. 2817. https://doi.org/10.1002/anie.200704949.
  39. Ravnsbæk D., Filinchuk Y., Cerenius Y. et al. // Angew. Chem. Int. Ed. 2009. V. 48. P. 6659. https://doi.org/10.1002/anie.200903030.
  40. Lindemann I., Ferrer R.D., Dunsch L. et al. // Chem. Eur. J. 2010. V. 16. P. 8707. https://doi.org/10.1002/chem.201000831.
  41. Černy R., Kim K.C., Penin N. et al. // J. Phys. Chem. C. 2010. V. 114. P. 19127. https://doi.org/10.1021/jp105957r.
  42. Fang Z.Z., Kang X.D., Wang P. et al. // J. Alloys Compd. 2010. V. 491. P. L1. https://doi.org/10.1016/j.jallcom.2009.10.149.
  43. Fang Z.Z., Kang X.D., Luo J.H. et al. // J. Phys. Chem. C. 2010. V. 114. P. 22736. https://doi.org/10.1021/jp109260g.
  44. Aidhy D.S., Wolverton C. // Phys. Rev. B. 2011. V. 83. P. 144111. https://doi.org/10.1103/PhysRevB.83.144111.
  45. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 867. https://doi.org/10.1134/S0036023624600874
  46. Zyubin A.S., Zyubina T.S., Kravchenko O.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1591.
  47. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
  48. Johnson B.J., Gill P.M.W., Pople J.A. // J. Chem. Phys. 1993. V. 98. P. 5612. https://doi.org/10.1063/1.464906
  49. Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010. https://doi.org/10.1063/1.464906

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).