Синтез и строение нанокристаллических сульфидов меди со структурами ковеллина и джарлеита

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом химического осаждения из водных растворов нитрата меди и сульфида натрия, а также из водных растворов нитрата меди с использованием диамида тиоугольной кислоты как сульфидизатора в присутствии Трилона Б в качестве стабилизатора синтезированы нанокристаллические порошки сульфидов меди со структурами ковеллина и джарлеита. Установлено, что в результате сульфидизации нитрата меди сульфидом натрия образуются порошки сульфида меди с основной фазой, обладающей структурой гексагонального ковеллина с размером наночастиц 3–6 нм. Кроме того, образуется моноклинный джарлеит Cu2–xS с размером частиц ~70 нм и малой нестехиометрией в подрешетке меди. Осаждение из слабощелочных водных растворов нитрата меди, диамида тиоугольной кислоты и Трилона Б с нагревом до ~90–100°C позволило получить однофазные нанокристаллические порошки CuS с размером частиц 45–55 нм, имеющие структуру гексагонального ковеллина.

Об авторах

С. И. Садовников

Институт химии твердого тела УрО РАН

Email: sadovnikov@ihim.uran.ru
ул. Первомайская, 91, Екатеринбург, 620990 Россия

А. И. Гусев

Институт химии твердого тела УрО РАН

ул. Первомайская, 91, Екатеринбург, 620990 Россия

Список литературы

  1. Lukashev P., Lambrecht W.R.L., Kotani T. et al. // Phys. Rev. B. 2007. V. 76. № 19. P. 195202. https://doi.org/10.1103/PhysRevB.76.195202
  2. Садовников С.И., Сергеева С.В., Гусев А.И. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 792. https://doi.org/10.31857/S0044457X24050192
  3. Зарудских М.А., Ильина Е.Г., Манкевич А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. C. 166. https://doi.org/10.31857/S0044457X24020038
  4. Shaikh G.Y., Nilegave D.S., Girawale S.S. et al. // ACS Omega. 2022. V. 7. № 34. P. 30233. https://doi.org/10.1021/acsomega.2c03352
  5. Evans H.T.Jr. // Nature Phys. Sci. 1971. V. 232. P. 69.
  6. Evans H.T.Jr. // Z. Kristallogr. 1979. V. 150. P. 299.
  7. Barth T. // Z. Mineral. Geol. A. 1926. P. 284.
  8. Evans H.T.Jr., Konnert J.A. // Am. Mineral. 1976. V. 61. P. 996.
  9. Fjellvag H., Gronvold F., Stolen S. et al. // Z. Kristallogr. 1988. V. 184. P. 111.
  10. Jiang X., Xie Yi., Lu J. et al. // J. Mater. Chem. 2010. V. 10. № 9. P. 2193.
  11. Djurle S. // Acta Chem. Scand. 1958. V. 12. № 7. P. 1415. https://doi.org/10.3891/acta.chem.scand.12-1415
  12. Roseboom E.H. // Am. Mineral. 1962. V. 47. P. 1181.
  13. Joint Committee on Powder Diffraction Standards (JCPDS card № C83 1463).
  14. Evans H.T. Jr. // Science. 1979. V. 203. № 4378. P. 356.
  15. Gronvold F., Westrum E.F. Jr. // Am. Mineral. 1980. V. 65. № 5–6. P. 574.
  16. Morimoto N., Kullerud G. // Am. Mineral. 1963. V. 48. № 1–2. P. 110.
  17. Mumme W.G., Sparrow G.J., Walker G.S. // Mineralogical Magazine. 1988. V. 52. № 6. P. 323.
  18. Мурашева К.С., Сайкова С.В., Воробьев С.А. и др. // Журн. структур. химии. 2017. Т. 58. № 7. С. 1421. https://doi.org/10.26902/JSC20170715
  19. Ульянова У.С., Кожевникова Н.С., Бакланова И.В. и др. // В кн.: Тезисы докл. XXVIII Рос. мол. научн. конф. “Проблемы теор. и эксп. химии”. Екатеринбург, 23–27 апр. 2018. С. 334.
  20. Behboudnia M., Khanbabaee B. // J. Cryst. Growth. 2007. V. 304. № 1. P. 158. https://doi.org/10.1016/j.jcrysgro.2007.02.016
  21. Bera P., Seok S.I. // Solid State Sci. 2012. V. 14. № 8. P. 1126. https://doi.org/10.1016/j.solidstatesciences.2012.05.027
  22. Xie Y., Riedinger A., Prato M. et al. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17630. https://doi.org/10.1021/ja409754v
  23. Ajibade P.A., Botha N.L. // Res. Phys. 2016. V. 6. P. 581. http://dx.doi.org/10.1016/j.rinp.2016.08.001
  24. Sleman U.M., Naji I.S. S // Iraqi J. Phys. 2018. V. 16. № 38. P. 124. https://doi.org/10.20723/ijp.16.38.124-131
  25. Kuterbekov K.A., Balapanov M.Kh., Kubenova M.M. et al. // Lett. Mater. 2022. V. 12. № 3. P. 191. https://doi.org/10.22226/2410-3535-2022-3-191-196
  26. Xie Y., Carbone L., Nobile C. et al. // ACS Nano. 2013. V. 7. P. 7352. https://doi.org/10.1021/nn403035s
  27. Jaque D., Maestro L.M., del Rosal B. et al. // Nanoscale. 2014. V.6. № 16. P. 9494. https://doi.org/10.1039/C4NR00708E
  28. Shaw W.H.R., Walker D.G. // J. Am. Chem. Soc. 1956. V. 78. № 22. P. 5769. https://pubs.acs.org/doi/10.1021/ja01603a014
  29. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: Изд-во УрО РАН, 2006. С. 41.
  30. X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands.
  31. Match. Version 1.10b. Phase Identification from Powder Diffraction 2003–2010 Crystal Impact.
  32. Takeuchi Y., Kudoh Y., Sato G. // Z. Kristallogr. 1985. V. 173. № 1–2. P. 1198. https://doi.org/10.1524/zkri.1985.173.1-2.119
  33. Joint Committee on Powder Diffraction Standards (JCPDS card № 75-2233).
  34. Ohmasa M., Suzuki M., Takeuchi Y. // Mineral. J. 1977. V. 8. № 6. P. 311.
  35. Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge: Cambridge Intern. Sci. Publishing, 2004. 351 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).