Применение алкоксоацетилацетонатов металлов для получения электрохромных пленок на основе V2O5, допированного никелем

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Vanadyl and nickel alkoxoacetylacetonates were used to prepare vanadium pentaoxide films doped with 1, 3, and 10 mol % nickel oxide. All films crystallized in tetragonal β-V2O5. The materials are strongly textured along the (200) axis and formed from one-dimensional structures, however, at 3 and 10 mol % NiO content, nanoparticles of 30–50 nm size are also observed in addition to them. According to the results of Raman spectroscopy, the materials contain a noticeable amount of V4+, ions, but no traces of NiO phases were found. All obtained materials, in terms of electrochromic properties are cathodic, changing color during reduction to dark blue, and during oxidation — to more transparent yellow. At the same time, an increase in nickel content leads to a decrease in coloring efficiency and slowing down of electrochromic processes. The results of the study allow us to conclude that it is promising to use materials based onV2O5, doped with nickel, obtained with the use of metal alkoxoacetylacetonates as precursors, as components of electrochromic devices.

About the authors

P. Y. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Moscow, 119991 Russia

N. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Moscow, 119991 Russia

T. L. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: phigoros@gmail.com
Moscow, 119991 Russia

E. P. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: phigoros@gmail.com
Moscow, 119991 Russia

References

  1. Mortimer R.J. // Annu Rev. Mater. Res. 2011. V. 41. № 1. P. 241. https://doi.org/10.1146/annurev-matsci-062910-100344
  2. Avendaño E., Berggren L., Niklasson G.A. et al. // Thin Solid Films. 2006. V. 496. № 1. P. 30. https://doi.org/10.1016/j.tsf.2005.08.183
  3. Granqvist C.G., Arvizu M.A., Qu H.Y. et al. // Surf. Coat. Technol. 2019. V. 357. P. 619. https://doi.org/10.1016/j.surfcoat.2018.10.048
  4. Granqvist C.G. // Thin Solid Films. 2014. V. 564. P. 1. https://doi.org/10.1016/j.tsf.2014.02.002
  5. Gillaspie D.T., Tenent R.C., Dillon A.C. // J. Mater. Chem. 2010. V. 20. № 43. P. 9585. https://doi.org/10.1039/c0jm00604a
  6. Mortimer R.J., Dyer A.L., Reynolds J.R. // Displays. 2006. V. 27. № 1. P. 2. https://doi.org/10.1016/j.displa.2005.03.003
  7. Gu C., Jia A.B., Zhang Y.M. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14679. https://doi.org/10.1021/acs.chemrev.1c01055
  8. Granqvist C.G., Arvizu M.A., Bayrak Pehlivan et al. // Electrochim Acta. 2018. V. 259. P. 1170. https://doi.org/10.1016/j.electacta.2017.11.169
  9. Zanarini S., Di Lupo F., Bedini A. et al. // J. Mater. Chem. C. Mater. 2014. V. 2. № 42. P. 8854. https://doi.org/10.1039/c4tc01123f
  10. Cheng K.C., Chen F.R., Kai J.J. // Solar Energy Materials Solar Cells. 2006. V. 90. № 7–8. P. 1156. https://doi.org/10.1016/j.solmat.2005.07.006
  11. Scherer M.R.J., Li L., Cunha P.M.S. et al. // Adv. Mat. 2012. V. 24. № 9. P. 1217. https://doi.org/10.1002/adma.201104272
  12. Jin A., Chen W., Zhu Q. et al. // Electr. Acta. 2010. V. 55. № 22. P. 6408. https://doi.org/10.1016/j.electacta.2010.06.047
  13. Costa C., Pinheiro C., Henriques I. et al. // ACS Appl. Mater. Interfaces. 2012. V. 4. № 10. P. 5266. https://doi.org/10.1021/am301213b
  14. Sonavane A.C., Inamdar A.I., Shinde P.S. et al. // J. Alloys. Compd. 2010. V. 489. № 2. P. 667. https://doi.org/10.1016/j.jallcom.2009.09.146
  15. Yoshino T., Kobayashi K., Araki S. et al. // Sol. Energy. Mater. Sol. Cells. 2012. V. 99. P. 43. https://doi.org/10.1016/j.solmat.2011.08.024
  16. Wen R.T., Niklasson G.A., Granqvist C.G. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 18. P. 9319. https://doi.org/10.1021/acsami.5b01715
  17. Liu Q., Chen Q., Zhang Q. et al. // J. Mater. Chem. C Mater. 2018. V. 6. № 3. P. 646. https://doi.org/10.1039/c7tc04696k
  18. Chen Y., Wang Y., Sun P. et al. // J. Mate.r Chem. A Mater. 2015. V. 3. № 41. P. 20614. https://doi.org/10.1039/c5ta04011f
  19. Simonenko E.P., Simonenko N.P., Kopitsa G.P. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 691. https://doi.org/10.1134/S0036023618060232
  20. Gorobtsov P.Y., Simonenko N.P., Simonenko T.L. et al. // Russ. J. Inorg. Chem. 2024. V. 69. P. 1580. https://doi.org/10.1134/S0036023624602277

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).