The electronic structure of the LrO8 cluster

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Relativistic discrete variation calculations of the electronic structure and the X-ray photoelectron spectrum of the valence electrons of the LrO8 were done. This cluster reflects the lattice fragment of lawrencium dioxides. A MO scheme of the valence molecular orbitals in the binding energy range 0 to ~50 eV was built. The Lr6d, 5f and O2p atomic orbitals were found to participate in the outer valence molecular orbitals (OVMO) formation, the Lr6p3/2 and O2s — АО atomic orbitals were found to participate in the inner valence molecular orbitals (IVMO) formation. The MO scheme allows understanding the chemical bond nature and the valence XPS spectrum in the LrO8 cluster. The relative contribution of the OVMO and IVMO electrons to the chemical bond covalence component was evaluated. A comparison with the valence XPS spectra of AnO2 of other actinides was done.

About the authors

Y. A. Teterin

M.V. Lomonosov Moscow State University; NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
Moscow, 119991 Russia; Moscow, 123182 Russia

M. V. Ryzhkov

Institute of Solid State Chemistry of Ural Dept. of RAS

Email: antonxray@yandex.ru
Ekaterinburg, 620041 Russia

A. E. Putkov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
Moscow, 119991 Russia

K. I. Maslakov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
Moscow, 119991 Russia

A. Y. Teterin

NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
Moscow, 123182 Russia

K. E. Ivanov

NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
Moscow, 123182 Russia

S. N. Kalmykov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
Moscow, 119991 Russia

V. G. Petrov

M.V. Lomonosov Moscow State University

Author for correspondence.
Email: antonxray@yandex.ru
Moscow, 119991 Russia

References

  1. Rai B.K., Bretana A., Morrison G. et al. // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.1088/1361-6633/ad38cb
  2. Pereiro F.A., Galley S.S., Jackson J.A. et al. // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3c03828
  3. Legg F., Harding L.M., Lewis J.C. et al. // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssrn.4573818
  4. Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2022. V. 64. № 5. P. 603. https://doi.org/10.1134/S1066362222050034
  5. Neidig M.L., Clark D.L., Martin R.L. // Coord. Chem. Rev. 2013. V. 257. P. 394. https://doi.org/10.1016/j.ccr.2012.04.029
  6. Katz J.J., Seaborg G.T., Morss L.R. The chemistry of the actinide elements. London-New York: Chapman and Hall, 1986.
  7. Sato T.K., Asai M., Borschevsky A. et al. // Nature. 2015. V. 520. P. 209. https://doi.org/10.1038/nature14342
  8. Sato T.K., Sato N., Asai M. et al. // Rev. Sci. Instrum. 2013. V. 84. P. 023304. https://doi.org/10.1063/1.4789772
  9. Bemis Jr. C.E., Dittner P.F., Silva R.J. et al. // Phys. Rev. C. 1977. V. 16. P. 1146. https://doi.org/10.1103/PhysRevC.16.1146
  10. Huang K.N., Aojogi M., Chen M.N. et al. // At. Data Nucl. Data Tables. 1976. V. 18. P. 243. https://doi.org/10.1016/0092-640X(76)90027-9
  11. Dzuba V.A., Safronova M.S., Safronova U.I. // Phys. Rev. A. 2014. V. 90. P. 012504. https://doi.org/10.1103/PhysRevA.90.012504
  12. Borschevsky A., Eliav E., Vilkas M.J. et al. // Eur. Phys. J. D. 2007. V. 45. P. 115. https://doi.org/10.1140/epjd/e2007-00130-9
  13. Pershina V. // Comptes Rendus Chimie. 2020. V. 23. № 3. P. 255. https://doi.org/10.5802/crchim.25
  14. Sevier K.D. // At. Data Nucl. Data Tables. 1979. V. 24. P. 323. https://doi.org/10.1016/0092-640X(79)90012-3
  15. Тетерин Ю.А., Путков А.Е., Тетерин А.Ю. и др. // Неорган. материалы. 2024. Т. 60. № 7. С. 1.
  16. Rosen A., Ellis D.E. // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
  17. Ellis D.E., Goodman G.L. // Int. J. Quant. Chem. 1984. V. 25. P. 185. https://doi.org/10.1002/qua.560250115
  18. Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
  19. Pyykko P., Toivonen H. // Acta Acad. Aboensis, Ser. B. 1983. P. 43.
  20. Varshalovish D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988.
  21. Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/10.1070/ RC2004v07n06ABEH000821
  22. Teterin Yu.A., Maslakov K.I., Teterin A.Yu. et al. // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
  23. Teterin Yu.A., Teterin A.Yu., Ivanov K.E. et al. // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
  24. Kelly P.J., Brooks M.S., Allen R. // J. Phys. Colloques. 1979. V. 40. № С4. P. 184. https://doi.org/10.1051/jphyscol:1979458
  25. Gubanov V.A., Rosen A., Ellis D.E. // J. Phys. Chem. Solids. 1979. V. 40. P. 17. https://doi.org/10.1016/0022-3697(79)90090-8
  26. Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A. et al. // Nucl. Techn. & Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP1202103Y
  27. Mulliken R.S. // Annu. Rev. Phys. Chem. 1978. V. 29. P. 1. https://doi.org/10.1146/annurev.pc.29.100178.000245

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).