Effect of boron oxide on the ionic conductivity of the Li1.2Al0.2Zr0.1Ti1.7 (PO4)3 ceramics with the NASICON structure
- Authors: Pyrkova A.B.1, Stenina I.A.1, Yaroslavtsev А.B.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- Issue: Vol 70, No 2 (2025)
- Pages: 274-283
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.rcsi.science/0044-457X/article/view/289538
- DOI: https://doi.org/10.31857/S0044457X25020136
- EDN: https://elibrary.ru/ICCHVX
- ID: 289538
Cite item
Abstract
Boron oxide is considered as a good dopant for improving the ionic conductivity of solid electrolytes. This effect is usually attributed to the optimization of grain boundary conductivity. In this work, the effect of addition of 1–4 wt. % boron oxide on the ionic conductivity of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 with the NASICON structure was investigated. The obtained materials were characterized by XRD, SEM, Raman spectroscopy, IR spectroscopy, impedance spectroscopy and MAS 27Al, 7Li, 31P and 11B NMR. It was shown that the introduction of B2O3 at the stage of synthesis of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 leads to the production of materials doped with boron ions. The highest conductivity (2.9 × 10–4 S/cm) at 25°C is characteristic of the sample with 2 wt. % boron oxide. At the same time, when B2O3 is added to the already prepared phosphate, it is predominantly localized at the interfaces, leads to the release of LiTiPO5 impurity and does not have a significant effect on the conductivity of the prepared samples.
Keywords
Full Text

About the authors
A. B. Pyrkova
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991
I. A. Stenina
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Author for correspondence.
Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991
А. B. Yaroslavtsev
Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991
References
- Grey C.P., Hall D.S. // Nat. Commun. 2020. V. 11. P. 6279. https://doi.org/10.1038/s41467-020-19991-4
- Sang J., Tang B., Pan K. et al. // Acc. Mater. Res. 2023. V. 4. P. 472. https://doi.org/10.1021/accountsmr.2c00229
- Janek J., Zeier W.G. // Nat. Energy. 2023. V. 8. P. 230. https://doi.org/10.1038/s41560-023-01208-9
- Zheng F., Kotobuki M., Song S. et al. // J. Power Sources. 2018. V. 389. P. 198. https://doi.org/10.1016/j.jpowsour.2018.04.022
- Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93. C. RCR5126. https://doi.org/10.59761/RCR5126
- Yu T., Yang X., Yang R. et al. // J. Alloys Compd. 2021. V. 885. P. 161013. https://doi.org/10.1016/j.jallcom.2021.161013
- Méry A., Rousselot S., Lepage D. et al. // Batteries. 2023. V. 9. P. 87. https://doi.org/10.3390/batteries9020087
- Stenina I., Novikova S., Voropaeva D., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
- Zhang Y., Zhan T., Sun Y. et al. // Chem. Sus. Chem. 2024. V. 17. P. e202301284. https://doi.org/10.1002/cssc.202301284
- Новикова С.А., Ярославцев А.Б. // Мембр. Технол. 2024. Т. 14. С. 288. https://doi.org/10.31857/S2218117224040047
- Arinicheva Y., Wolff M., Lobe S. et al. // Advanced Ceramics for Energy Conversion and Storage / Ed. Guillon O. Elsevier: Amsterdam, 2020. P. 549. http://dx.doi.org/10.1016/B978-0-08-102726-4.00010-7
- Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
- Kyono N., Bai F., Nemori H. et al. // Solid State Ionics. 2018. V. 324. P. 114. https://doi.org/10.1016/j.ssi.2018.06.016
- Rai K., Kundu S. // Ceram. Int. 2020. V. 46. P. 23695. https://doi.org/10.1016/j.ceramint.2020.06.143
- Saffirio S., Falco M., Appetecchi G.B. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1023. https://doi.org/10.1016/j.jeurceramsoc.2021.11.014
- Nuernberg R.B., Basbus J.F., Lux K.C. et al. // J. Phys. Chem. C. 2022. V. 126. P. 4584. https://doi.org/10.1021/acs.jpcc.1c09456
- Xu A., Wang R., Yao M. et al. // Nanomaterials. 2022. V. 12. P. 2082. https://doi.org/10.3390/nano12122082
- Cвитанько А.И., Новикова С.А., Стенина И.А. и др. // Неорган. материалы. 2014. Т. 50. С. 295. https://doi.org/10.7868/S0002337X14030142
- Zhang P., Matsui M., Takeda Y. et al. // Solid State Ionics. 2014. V. 263. P. 27. https://doi.org/10.1016/j.ssi.2015.01.004
- Kothari D.H., Kanchan D.K. // Ionics. 2015. V. 21. P. 1253. https://doi.org/10.1007/s11581-014-1287-9
- Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2017. V. 56. P. 1216. https://doi.org/10.1021/acs.inorgchem.6b02274
- Stenina I., Pyrkova A., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 59. https://doi.org/10.3390/batteries9010059
- Грищенко Д.Н., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2024. Т. 69. C. 155. https://doi.org/10.31857/S0044457X24020025
- Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. Т. 69. C. 1683. https://doi.org/10.31857/S0044457X23601360
- Pershina S.V., Vovkotrub E.G., Antonov B.D. // Solid State Ionics. 2022. V. 383. P. 115990. https://doi.org/10.1016/j.ssi.2022.115990
- Kim Y.-C., Jung K.-N., Lee J.-W., Park M.-S. // Ceram. Int. 2020. V. 46. P. 23200. https://doi.org/10.1016/j.ceramint.2020.06.101
- Kang J., Guo X., Gu R. et al. // J. Alloys Compd. 2023. V. 941. P. 168857. https://doi.org/10.1016/j.jallcom.2023.168857
- Bai H., Hu J., Li X. et al. // Ceram. Int. 2018. V. 44. P. 6558. https://doi.org/10.1016/j.ceramint.2018.01.058
- Rumpel M., Appold L., Baber J. et al. // Mater. Adv. 2022. V. 3. P. 8157. https://doi.org/10.1039/D2MA00655C
- Zhu Y., Zhang Y., Lu L. // J. Power Sources. 2015. V. 290. P. 123. https://doi.org/10.1016/j.jpowsour.2015.04.170
- Das A., Sahu S., Mohapatra M. et al. // Mater. Today Energy. 2022. V. 29. P. 101118. https://doi.org/10.1016/j.mtener.2022.101118
- Jadhav H.S., Kalubarme R.S., Jang S.-Y. et al. // Dalton Trans. 2014. V. 43. P. 11723. https://doi.org/10.1039/C4DT01144A
- Peng H., Xie H., Goodenough J.B. // J. Power Sources. 2012. V. 197. P. 310. https://doi.org/10.1016/j.jpowsour.2011.09.046
- Ślubowska W., Kwatek K., Jastrzębski C. et al. // Solid State Ionics. 2019. V. 335. P. 129. https://doi.org/10.1016/j.ssi.2019.02.022
- Yan B., Kang L., Kotobuki M. et al. // J. Solid State Electrochem. 2021. V. 25. P. 527. https://doi.org/10.1007/s10008-020-04829-2
- Clemenceau T., Raj R. // MRS Commun. 2022. V. 12. P. 201. https://doi.org/10.1557/s43579-022-00162-z
- Minkiewicz J., Jones G.M., Ghanizadeh S. et al. // Open Ceram. 2023. V. 16. P. 100497. https://doi.org/10.1016/j.oceram.2023.100497
- Mariappan C.R., Gellert M., Yada C. et al. // Electrochem. Commun. 2012. V. 14. P. 25. https://doi.org/10.1016/j.elecom.2011.10.022
- Jonderian A., McCalla E. // Mater. Adv. 2021. V. 2. P. 2846. https://doi.org/10.1039/D1MA00082A
- Kobayashi R., Nakano K., Nakayama M. // Acta Mater. 2022. V. 226. P. 117596. https://doi.org/10.1016/j.actamat.2021.117596
- Stenina I.A., Velikodnyi Y.A., Ketsko V.A. et al. // Inorg. Mater. 2004. V. 40. P. 967. https://doi.org/10.1023/B:INMA.0000041330.84296.2e
- Francisco B.E., Stoldt C.R., M’Peko J.-C. // Chem. Mater. 2014. V. 26. P. 4741. https://doi.org/10.1021/cm5013872
- Barj M., Lucazeau G., Delmas C. // J. Solid State Chem. 1992. V. 100. P. 141. https://doi.org/10.1016/0022-4596(92)90164-q
- Arbi K., Bucheli W., Jiménez R., Sanz J. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1477. https://doi.org/10.1016/j.jeurceramsoc.2014.11.023
- Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2024. V. 63. P. 7806. https://doi.org/10.1021/acs.inorgchem.4c00289
- Qiu D., Guerry P., Ahmed I. et al. // Mater. Chem. Phys. 2008. V. 111. P. 455. https://doi.org/10.1016/j.matchemphys.2008.04.045
- Duan J., Yu Y., Sun A. et al. // J. Power Sources. 2020. V. 449. P. 227574. https://doi.org/10.1016/j.jpowsour.2019.227574
- Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S249.
Supplementary files
