Effect of boron oxide on the ionic conductivity of the Li1.2Al0.2Zr0.1Ti1.7 (PO4)3 ceramics with the NASICON structure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Boron oxide is considered as a good dopant for improving the ionic conductivity of solid electrolytes. This effect is usually attributed to the optimization of grain boundary conductivity. In this work, the effect of addition of 1–4 wt. % boron oxide on the ionic conductivity of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 with the NASICON structure was investigated. The obtained materials were characterized by XRD, SEM, Raman spectroscopy, IR spectroscopy, impedance spectroscopy and MAS 27Al, 7Li, 31P and 11B NMR. It was shown that the introduction of B2O3 at the stage of synthesis of Li1.2Al0.2Zr0.1Ti1.7(PO4)3 leads to the production of materials doped with boron ions. The highest conductivity (2.9 × 10–4 S/cm) at 25°C is characteristic of the sample with 2 wt. % boron oxide. At the same time, when B2O3 is added to the already prepared phosphate, it is predominantly localized at the interfaces, leads to the release of LiTiPO5 impurity and does not have a significant effect on the conductivity of the prepared samples.

Full Text

Restricted Access

About the authors

A. B. Pyrkova

Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991

I. A. Stenina

Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

Author for correspondence.
Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991

А. B. Yaroslavtsev

Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences

Email: stenina@igic.ras.ru
Russian Federation, Moscow, 119991

References

  1. Grey C.P., Hall D.S. // Nat. Commun. 2020. V. 11. P. 6279. https://doi.org/10.1038/s41467-020-19991-4
  2. Sang J., Tang B., Pan K. et al. // Acc. Mater. Res. 2023. V. 4. P. 472. https://doi.org/10.1021/accountsmr.2c00229
  3. Janek J., Zeier W.G. // Nat. Energy. 2023. V. 8. P. 230. https://doi.org/10.1038/s41560-023-01208-9
  4. Zheng F., Kotobuki M., Song S. et al. // J. Power Sources. 2018. V. 389. P. 198. https://doi.org/10.1016/j.jpowsour.2018.04.022
  5. Воропаева Д.Ю., Стенина И.А., Ярославцев А.Б. // Успехи химии. 2024. Т. 93. C. RCR5126. https://doi.org/10.59761/RCR5126
  6. Yu T., Yang X., Yang R. et al. // J. Alloys Compd. 2021. V. 885. P. 161013. https://doi.org/10.1016/j.jallcom.2021.161013
  7. Méry A., Rousselot S., Lepage D. et al. // Batteries. 2023. V. 9. P. 87. https://doi.org/10.3390/batteries9020087
  8. Stenina I., Novikova S., Voropaeva D., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 407. https://doi.org/10.3390/batteries9080407
  9. Zhang Y., Zhan T., Sun Y. et al. // Chem. Sus. Chem. 2024. V. 17. P. e202301284. https://doi.org/10.1002/cssc.202301284
  10. Новикова С.А., Ярославцев А.Б. // Мембр. Технол. 2024. Т. 14. С. 288. https://doi.org/10.31857/S2218117224040047
  11. Arinicheva Y., Wolff M., Lobe S. et al. // Advanced Ceramics for Energy Conversion and Storage / Ed. Guillon O. Elsevier: Amsterdam, 2020. P. 549. http://dx.doi.org/10.1016/B978-0-08-102726-4.00010-7
  12. Stenina I.A., Yaroslavtsev A.B. // Pure Appl. Chem. 2017. V. 89. P. 1185. https://doi.org/10.1515/pac-2016-1204
  13. Kyono N., Bai F., Nemori H. et al. // Solid State Ionics. 2018. V. 324. P. 114. https://doi.org/10.1016/j.ssi.2018.06.016
  14. Rai K., Kundu S. // Ceram. Int. 2020. V. 46. P. 23695. https://doi.org/10.1016/j.ceramint.2020.06.143
  15. Saffirio S., Falco M., Appetecchi G.B. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1023. https://doi.org/10.1016/j.jeurceramsoc.2021.11.014
  16. Nuernberg R.B., Basbus J.F., Lux K.C. et al. // J. Phys. Chem. C. 2022. V. 126. P. 4584. https://doi.org/10.1021/acs.jpcc.1c09456
  17. Xu A., Wang R., Yao M. et al. // Nanomaterials. 2022. V. 12. P. 2082. https://doi.org/10.3390/nano12122082
  18. Cвитанько А.И., Новикова С.А., Стенина И.А. и др. // Неорган. материалы. 2014. Т. 50. С. 295. https://doi.org/10.7868/S0002337X14030142
  19. Zhang P., Matsui M., Takeda Y. et al. // Solid State Ionics. 2014. V. 263. P. 27. https://doi.org/10.1016/j.ssi.2015.01.004
  20. Kothari D.H., Kanchan D.K. // Ionics. 2015. V. 21. P. 1253. https://doi.org/10.1007/s11581-014-1287-9
  21. Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2017. V. 56. P. 1216. https://doi.org/10.1021/acs.inorgchem.6b02274
  22. Stenina I., Pyrkova A., Yaroslavtsev A. // Batteries. 2023. V. 9. P. 59. https://doi.org/10.3390/batteries9010059
  23. Грищенко Д.Н., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2024. Т. 69. C. 155. https://doi.org/10.31857/S0044457X24020025
  24. Стенина И.А., Таранченко Е.О., Ильин А.Б. и др. // Журн. неорган. химии. 2023. Т. 69. C. 1683. https://doi.org/10.31857/S0044457X23601360
  25. Pershina S.V., Vovkotrub E.G., Antonov B.D. // Solid State Ionics. 2022. V. 383. P. 115990. https://doi.org/10.1016/j.ssi.2022.115990
  26. Kim Y.-C., Jung K.-N., Lee J.-W., Park M.-S. // Ceram. Int. 2020. V. 46. P. 23200. https://doi.org/10.1016/j.ceramint.2020.06.101
  27. Kang J., Guo X., Gu R. et al. // J. Alloys Compd. 2023. V. 941. P. 168857. https://doi.org/10.1016/j.jallcom.2023.168857
  28. Bai H., Hu J., Li X. et al. // Ceram. Int. 2018. V. 44. P. 6558. https://doi.org/10.1016/j.ceramint.2018.01.058
  29. Rumpel M., Appold L., Baber J. et al. // Mater. Adv. 2022. V. 3. P. 8157. https://doi.org/10.1039/D2MA00655C
  30. Zhu Y., Zhang Y., Lu L. // J. Power Sources. 2015. V. 290. P. 123. https://doi.org/10.1016/j.jpowsour.2015.04.170
  31. Das A., Sahu S., Mohapatra M. et al. // Mater. Today Energy. 2022. V. 29. P. 101118. https://doi.org/10.1016/j.mtener.2022.101118
  32. Jadhav H.S., Kalubarme R.S., Jang S.-Y. et al. // Dalton Trans. 2014. V. 43. P. 11723. https://doi.org/10.1039/C4DT01144A
  33. Peng H., Xie H., Goodenough J.B. // J. Power Sources. 2012. V. 197. P. 310. https://doi.org/10.1016/j.jpowsour.2011.09.046
  34. Ślubowska W., Kwatek K., Jastrzębski C. et al. // Solid State Ionics. 2019. V. 335. P. 129. https://doi.org/10.1016/j.ssi.2019.02.022
  35. Yan B., Kang L., Kotobuki M. et al. // J. Solid State Electrochem. 2021. V. 25. P. 527. https://doi.org/10.1007/s10008-020-04829-2
  36. Clemenceau T., Raj R. // MRS Commun. 2022. V. 12. P. 201. https://doi.org/10.1557/s43579-022-00162-z
  37. Minkiewicz J., Jones G.M., Ghanizadeh S. et al. // Open Ceram. 2023. V. 16. P. 100497. https://doi.org/10.1016/j.oceram.2023.100497
  38. Mariappan C.R., Gellert M., Yada C. et al. // Electrochem. Commun. 2012. V. 14. P. 25. https://doi.org/10.1016/j.elecom.2011.10.022
  39. Jonderian A., McCalla E. // Mater. Adv. 2021. V. 2. P. 2846. https://doi.org/10.1039/D1MA00082A
  40. Kobayashi R., Nakano K., Nakayama M. // Acta Mater. 2022. V. 226. P. 117596. https://doi.org/10.1016/j.actamat.2021.117596
  41. Stenina I.A., Velikodnyi Y.A., Ketsko V.A. et al. // Inorg. Mater. 2004. V. 40. P. 967. https://doi.org/10.1023/B:INMA.0000041330.84296.2e
  42. Francisco B.E., Stoldt C.R., M’Peko J.-C. // Chem. Mater. 2014. V. 26. P. 4741. https://doi.org/10.1021/cm5013872
  43. Barj M., Lucazeau G., Delmas C. // J. Solid State Chem. 1992. V. 100. P. 141. https://doi.org/10.1016/0022-4596(92)90164-q
  44. Arbi K., Bucheli W., Jiménez R., Sanz J. // J. Eur. Ceram. Soc. 2015. V. 35. P. 1477. https://doi.org/10.1016/j.jeurceramsoc.2014.11.023
  45. Kahlaoui R., Arbi K., Sobrados I. et al. // Inorg. Chem. 2024. V. 63. P. 7806. https://doi.org/10.1021/acs.inorgchem.4c00289
  46. Qiu D., Guerry P., Ahmed I. et al. // Mater. Chem. Phys. 2008. V. 111. P. 455. https://doi.org/10.1016/j.matchemphys.2008.04.045
  47. Duan J., Yu Y., Sun A. et al. // J. Power Sources. 2020. V. 449. P. 227574. https://doi.org/10.1016/j.jpowsour.2019.227574
  48. Yaroslavtsev A.B. // Russ. J. Inorg. Chem. 2000. V. 45. Suppl. 3. P. S249.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of materials LAZTP-xB-syn (a) and LAZTP-xB-bm (b). Boron content (wt. %): x = 0 (1), 1 (2), 2 (3), 4 (4). The asterisk indicates LiTiPO5 reflections.

Download (60KB)
3. Fig. 2. CR spectra of materials based on Li1.2Al0.2Zr0.1Ti1.7(PO4)3: 1 - LAZTP-0B-syn, 2 - LAZTP-2B-syn, 3 - LAZTP-2B-bm.

Download (41KB)
4. Fig. 3. Fragments of IR spectra of LAZTP-xB-syn (a) and LAZTP-xB-bm (b). Boron content (wt. %): x = 0 (1), 1 (2), 2 (3), 4 (4).

Download (83KB)
5. Fig. 4. MAS NMR spectra at 27Al (a), 7Li (b), 31P (c) and 11B (d) nuclei of LAZTP-4B-syn (1) and LAZTP-4B-bm (2).

Download (93KB)
6. Fig. 5. Surface micrographs of LAZTP-0B-syn (a), LAZTP-1B-syn (b), LAZTP-2B-syn (c), LAZTP-4B-syn (d), LAZTP-0B-bm (e) and LAZTP-4B-bm (f) tablets.

Download (1015KB)
7. Fig. 6. Temperature dependences of the total conductivity for the materials LAZTP-xB-syn (a) and LAZTP-xB-bm (b).

Download (84KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».