Hard carbon for sodium-ion batteries: progress and prospects for application
- Authors: Podgorbunsky A.B.1, Opra D.P.1, Zheleznov V.V.1, Sinebryukhov S.L.1, Gnedenkov S.V.1
-
Affiliations:
- Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
- Issue: Vol 70, No 2 (2025)
- Pages: 212-231
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289434
- DOI: https://doi.org/10.31857/S0044457X25020086
- EDN: https://elibrary.ru/ICMNAB
- ID: 289434
Cite item
Abstract
A brief overview of the prospects for the use of non-graphitizable (hard) carbon as an active material for the negative electrode of sodium-ion batteries is presented. It summarizes the most important achievements in the processing organic precursor biomass area to obtain the hard carbon and provides an assessment of the parameters of electrochemical cells based on such materials. The latest progress in production of next-generation metal-ion batteries is discussed and the reasons for the need for such a transition are listed.
Full Text

About the authors
A. B. Podgorbunsky
Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: pab@ich.dvo.ru
Russian Federation, Vladivostok, 690022
D. P. Opra
Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
Email: pab@ich.dvo.ru
Russian Federation, Vladivostok, 690022
V. V. Zheleznov
Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
Email: pab@ich.dvo.ru
Russian Federation, Vladivostok, 690022
S. L. Sinebryukhov
Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
Email: pab@ich.dvo.ru
Russian Federation, Vladivostok, 690022
S. V. Gnedenkov
Institute of Chemistry Far-Eastern Branch, Russian Academy of Sciences
Email: pab@ich.dvo.ru
Russian Federation, Vladivostok, 690022
References
- Zhao L.F., Hu Z., Lai W.H. et al. // Adv. Energy Mater. 2021. V. 11. № 1. P. 1. https://doi.org/10.1002/aenm.202002704
- Mingaleeva R.D. // Vestn. Univ. 2023. № 5. P. 37. https://doi.org/10.26425/1816-4277-2023-5-37-45
- Jia S., Abdolhosseini M., Liu C. et al. // Adv. Energy Sustain. Res. 2024. V. 5. https://doi.org/10.1002/aesr.202400051
- Alkhalidi A., Khawaja M.K., Ismail S.M. et al. // Sci. Talks 2024. V. 11. P. 100382. https://doi.org/10.1016/j.sctalk.2024.100382
- Goodenough J.B. // Energy Storage Mater. 2015. V. 1. P. 158. https://doi.org/10.1016/j.ensm.2015.07.001
- Yang H.L., Zhang B.W., Konstantinov K. et al. // Adv. Energy Sustain. Res. 2021. V. 2. P. 1. https://doi.org/10.1002/aesr.202000057
- Barrios E.A., Rains A.A., Lin Y. et al. // ACS Appl. Mater. Interfaces 2022. V. 14. № 18. P. 21363. https://doi.org/10.1021/acsami.2c03012
- Kiran Alva S. Manufacturing & Regional Cost Competitiveness of Commercial Sodium Ion Cells: A bottom-up cost analysis of Lithium and Sodium Ion Battery Storage. Stockholm: KTH Royal Institute of Technology (2023) P. 98.
- Mauler L., Duffner F., Zeier W.G. et al. // Energy Environ. Sci. 2021. V. 14. № 9. P. 4712. https://doi.org/10.1039/d1ee01530c
- Ge P., Fouletier M. // Solid State Ionics 1988. V. 28–30. № PART 2. P. 1172. https://doi.org/10.1016/0167-2738(88)90351-7
- Stevens D.A., Dahn J.R. // J. Electrochem. Soc. 2001. V. 148. № 8. P. A803. https://doi.org/10.1149/1.1379565
- Dahn J.R., Zheng T., Liu Y. et al. // Science 1995. V. 270. № 5236. P. 590. https://doi.org/10.1126/science.270.5236.590
- Coetzer J. // J. Power Sources 1986. V. 18. № 4. P. 377. https://doi.org/10.1016/0378-7753(86)80093-3
- Kummer J.T. // Prog. Solid State Chem. 1972. V. 7. № C. P. 141. https://doi.org/10.1016/0079-6786(72)90007-6
- Lu X., Xia G., Lemmon J.P. et al. // J. Power Sources 2010. V. 195. № 9. P. 2431. https://doi.org/10.1016/j.jpowsour.2009.11.120
- Whittingham M.S. // MRS Bull. 2021. V. 46. № 2. P. 168. https://doi.org/10.1557/s43577-021-00034-2
- Kummer J.T., Weber N. // SAE Tech. Pap. 1967. P. 1003. https://doi.org/10.4271/670179
- Min X., Xiao J., Fang M. et al. // Energy Environ. Sci. 2021. V. 14. № 4. P. 2186. https://doi.org/10.1039/D0EE02917C
- Xue L., Li Y., Gao H. et al. // J. Am. Chem. Soc. 2017. V. 139. № 6. P. 2164. https://doi.org/10.1021/jacs.6b12598
- Xu K. // Chem. Rev. 2014. V. 114. № 23. P. 11503. https://doi.org/10.1021/cr500003w
- Kulova T.L., Skundin A.M. // Electrochem. Energ. 2016. V. 16. № 3. P. 122. https://doi.org/10.18500/1608-4039-2016-16-3-122-150
- Lakienko G.P., Bobyleva Z. V., Apostolova M.O. et al. // Batteries 2022. V. 8. № 10. P. 131. https://doi.org/10.3390/batteries8100131
- Liu P., Li Y., Hu Y.S. et al. // J. Mater. Chem. A 2016. V. 4. № 34. P. 13046. https://doi.org/10.1039/c6ta04877c
- Moon H., Innocenti A., Liu H. et al. // ChemSusChem 2023. V. 16. № 1. P. e202201713. https://doi.org/10.1002/cssc.202201713
- Gibertini E., Liberale F., Dossi C. et al. // J. Appl. Electrochem. 2021. V. 51. № 12. P. 1665. https://doi.org/10.1007/s10800-021-01609-2
- Chen M., Luo F., Liao Y. et al. // J. Electroanal. Chem. 2022. V. 919. P. 116526. https://doi.org/10.1016/j.jelechem.2022.116526
- Dou X., Hasa I., Saurel D. et al. // Mater. Today 2019. V. 23. P. 87. https://doi.org/10.1016/j.mattod.2018.12.040
- Фиалков А.С. // Электрохимия 2000. V. 36. № 4. P. 389.
- E. F.R. // Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1951. V. 209. № 1097. P. 196. https://doi.org/10.1098/rspa.1951.0197
- Xu H., Cheng B., Du Q. et al. // Nano Res. 2023. V. 16. № 8. P. 10985. https://doi.org/10.1007/s12274-023-5853-1
- Xie F., Xu Z., Guo Z. et al. // Prog. Energy 2020. V. 2. № 4. P. 042002. https://doi.org/10.1088/2516-1083/aba5f5
- Saurel D., Orayech B., Xiao B. et al. // Adv. Energy Mater. 2018. V. 8. № 17. https://doi.org/10.1002/aenm.201703268
- Zhang H., Huang Y., Ming H. et al. // J. Mater. Chem. A. 2020. V. 8. № 4. P. 1604. https://doi.org/10.1039/C9TA09984K
- Pendashteh A., Orayech B., Suhard H. et al. // Energy Storage Mater. 2022. V. 46. P. 417. https://doi.org/10.1016/j.ensm.2022.01.030
- Youn Y., Gao B., Kamiyama A. et al. // npj Comput. Mater. 2021. V. 7. № 1. P. 48. https://doi.org/10.1038/s41524-021-00515-7
- Harris P.J.F. // Int. Mater. Rev. 1997. V. 42. № 5. P. 206. https://doi.org/10.1179/imr.1997.42.5.206
- Alvira D., Antorán D., Manyà J.J. // Chem. Eng. J. 2022. V. 447. P. 137468. https://doi.org/10.1016/j.cej.2022.137468
- Au H., Alptekin H., Jensen A.C.S. et al. // Energy Environ. Sci. 2020. V. 13. № 10. P. 3469. https://doi.org/10.1039/d0ee01363c
- Stevens D.A., Dahn J.R. // J. Electrochem. Soc. 2000. V. 147. № 4. P. 1271. https://doi.org/10.1149/1.1393348
- Asfaw H.D., Tai C.-W., Valvo M. et al. // Mater. Today Energy 2020. V. 18. P. 100505. https://doi.org/10.1016/j.mtener.2020.100505
- Asfaw H.D., Gond R., Kotronia A. et al. // Sustain. Mater. Technol. 2022. V. 32. P. E00407. https://doi.org/10.1016/j.susmat.2022.e00407
- Liu Y., Merinov B. V., Goddard W.A. // Proc. Natl. Acad. Sci. 2016. V. 113. № 14. P. 3735. https://doi.org/10.1073/pnas.1602473113
- Wang Z., Selbach S.M., Grande T. // RSC Adv. 2014. V. 4. № 8. P. 4069. https://doi.org/10.1039/c3ra47187j
- Lenchuk O., Adelhelm P., Mollenhauer D. // Phys. Chem. Chem. Phys. 2019. V. 21. № 35. P. 19378. https://doi.org/10.1039/C9CP03453F
- Anji Reddy M., Helen M., Groß A. et al. // ACS Energy Lett. 2018. V. 3. № 12. P. 2851. https://doi.org/10.1021/acsenergylett.8b01761
- Jin Y., Shi Z., Han T. et al. // Processes 2023. V. 11. № 3. P. 764. https://doi.org/10.3390/pr11030764
- Qiu S., Xiao L., Sushko M.L. et al. // Adv. Energy Mater. 2017. V. 7. № 17. https://doi.org/10.1002/aenm.201700403
- Dahbi M., Kiso M., Kubota K. et al. // J. Mater. Chem. A 2017. V. 5. № 20. P. 9917. https://doi.org/10.1039/c7ta01394a
- Cao Y., Xiao L., Sushko M.L. et al. // Nano Lett. 2012. V. 12. № 7. P. 3783. https://doi.org/10.1021/nl3016957
- Zhang N., Liu Q., Chen W. et al. // J. Power Sources 2018. V. 378. P. 331. https://doi.org/10.1016/j.jpowsour.2017.12.054
- Bommier C., Surta T.W., Dolgos M. et al. // Nano Lett. 2015. V. 15. № 9. P. 5888. https://doi.org/10.1021/acs.nanolett.5b01969
- Yin X., Zhao Y., Wang X. et al. // Small 2022. V. 18. № 5. P. 2105568. https://doi.org/10.1002/smll.202105568
- Sun N., Guan Z., Liu Y. et al. // Adv. Energy Mater. 2019. V. 9. № 32. P. 1901351. https://doi.org/10.1002/aenm.201901351
- Bai P., He Y., Zou X. et al. // Adv. Energy Mater. 2018. V. 8. № 15. P. 1703217. https://doi.org/10.1002/aenm.201703217
- Li Z., Bommier C., Chong Z.S. et al. // Adv. Energy Mater. 2017. V. 7. № 18. P. 1602894. https://doi.org/10.1002/aenm.201602894
- Alvin S., Chandra C., Kim J. // Chem. Eng. J. 2020. V. 391. P. 123576. https://doi.org/10.1016/j.cej.2019.123576
- Bommier C., Luo W., Gao W.Y. et al. // Carbon N. Y. 2014. V. 76. P. 165. https://doi.org/10.1016/j.carbon.2014.04.064
- Matei Ghimbeu C., Górka J., Simone V. et al. // Nano Energy 2018. V. 44. P. 327. https://doi.org/10.1016/j.nanoen.2017.12.013
- Zhang B., Ghimbeu C.M., Laberty C. et al. // Adv. Energy Mater. 2016. V. 6. № 1. P. 1501588. https://doi.org/10.1002/aenm.201501588
- Morikawa Y., Nishimura S., Hashimoto R. et al. // Adv. Energy Mater. 2020. V. 10. № 3. P. 1903176. https://doi.org/10.1002/aenm.201903176
- Stratford J.M., Kleppe A.K., Keeble D.S. et al. // J. Am. Chem. Soc. 2021. V. 143. № 35. P. 14274. https://doi.org/10.1021/jacs.1c06058
- Shao W., Shi H., Jian X. et al. // Adv. Energy Sustain. Res. 2022. V. 3. № 7. P. 2200009. https://doi.org/10.1002/aesr.202200009
- Abramova E.N., Bobyleva Z. V., Drozhzhin O.A. et al. // Russ. Chem. Rev. 2024. V. 93. № 2. P. RCR5100. https://doi.org/10.59761/rcr5100
- Senthil C., Park J.W., Shaji N. et al. // J. Energy Chem. 2021. V. 64. P. 286. https://doi.org/10.1016/j.jechem.2021.04.060
- Tan M., Zhang W., Fan C. et al. // Energy Technol. 2019. V. 7. № 3. P. 1801164. https://doi.org/10.1002/ente.201801164
- Zheng Y., Lu Y., Qi X. et al. // Energy Storage Mater. 2019. V. 18. P. 269. https://doi.org/10.1016/j.ensm.2018.09.002
- Xu Z., Wang J., Guo Z. et al. // Adv. Energy Mater. 2022. V. 12. № 18. P. 2200208. https://doi.org/10.1002/aenm.202200208
- Yang B., Wang J., Zhu Y. et al. // J. Power Sources 2021. V. 492. P. 229656. https://doi.org/10.1016/j.jpowsour.2021.229656
- Li Z., Chen Y., Jian Z. et al. // Chem. Mater. 2018. V. 30. № 14. P. 4536. https://doi.org/10.1021/acs.chemmater.8b00645
- Prabakar S.J.R., Han S.C., Park C. et al. // J. Electrochem. Soc. 2017. V. 164. № 9. P. A2012. https://doi.org/10.1149/2.1251709jes
- Li Y., Hu Y.-S., Li H. et al. // J. Mater. Chem. A 2016. V. 4. № 1. P. 96. https://doi.org/10.1039/C5TA08601A
- Izanzar I., Dahbi M., Kiso M. et al. // Carbon N. Y. 2018. V. 137. P. 165. https://doi.org/10.1016/j.carbon.2018.05.032
- Liu Z.T., Hsieh T.H., Huang C.W. et al. // J. Taiwan Inst. Chem. Eng. 2024. V. 154. P. 104889. https://doi.org/10.1016/j.jtice.2023.104889
- Xu Z., Chen J., Wu M. et al. // Electron. Mater. Lett. 2019. V. 15. № 4. P. 428. https://doi.org/10.1007/s13391-019-00143-w
- Корпачев В.П., Пережилин А.И., Андрияс А.А. и др. // Хвойные бореальной зоны 2019. Т. 37. № 5. С. 295.
- Rath P.C., Patra J., Huang H. et al. // ChemSusChem 2019. V. 12. № 10. P. 2302. https://doi.org/10.1002/cssc.201900319
- Zhang W., Qiu X., Wang C. et al. // Carbon Res. 2022. V. 1. № 1. P. 14. https://doi.org/10.1007/s44246-022-00009-1
- Prusov A.N., Prusova S.M., Radugin M.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2069. https://doi.org/10.1134/S0036023622700061
- Вилкова О.Ю. // Рыбпром: технологии и оборудование для переработки водных биоресурсов. 2010. № 3. С. 4.
- Yang Y., Hassan S.H.A., Awasthi M.K. et al. // Food Biosci. 2023. V. 51. P. 102267. https://doi.org/10.1016/j.fbio.2022.102267
- Fedotova E.E., Korchagin V.P., Vingorodova D.D. // Izv. TINRO 2020. V. 200. № 4. P. 1008. https://doi.org/10.26428/1606-9919-2020-200-1008-1015
- Podkorytova A.V., Roshchina A.N. // Tr. VNIRO 2021. V. 186. № 4. P. 156. https://doi.org/10.36038/2307-3497-2021-186-156-172
- Клочкова Т.А., Климова А.В. Клочкова Н.Г. // Вестник Камчатского государственного технического университета 2019. V. 48. P. 90.
- Baghel R.S., Reddy C.R.K., Singh R.P. // Carbohydr. Polym. 2021. V. 267. P. 118241. https://doi.org/10.1016/j.carbpol.2021.118241
- Shurin J.B., Burkart M.D., Mayfield S.P. et al. // F1000Research 2016. V. 5. P. 2434. https://doi.org/10.12688/f1000research.9217.1
- Wang P., Zhu X., Wang Q. et al. // J. Mater. Chem. A 2017. V. 5. № 12. P. 5761. https://doi.org/10.1039/c7ta00639j
- Ouyang H., Ma Y., Gong Q. et al. // J. Alloys Compd. 2020. V. 823. P. 153862. https://doi.org/10.1016/j.jallcom.2020.153862
- Belmesov A.A., Glukhov A.A., Kayumov R.R. et al. // Coatings 2023. V. 13. № 12. P. 2075. https://doi.org/10.3390/coatings13122075
- Скундин А.М., Кулова Т.Л., Ярославцев А.Б. // Электрохимия 2018. № 2. P. 131. https://doi.org/10.7868/s0424857018020019
- Bischof K., Marangon V., Kasper M. et al. // J. Power Sources Adv. 2024. V. 27. P. 100148. https://doi.org/10.1016/j.powera.2024.100148
- Chen Y., Ye C., Zhang N. et al. // Mater. Today 2024. V. 73. P. 260. https://doi.org/10.1016/j.mattod.2024.01.002
- Bobyleva Z. V., Drozhzhin O.A., Dosaev K.A. et al. // Electrochim. Acta 2020. V. 354. P. 136647. https://doi.org/10.1016/j.electacta.2020.136647
- Li Y., Lu Y., Zhao C. et al. // Energy Storage Mater. 2017. V. 7. P. 130. https://doi.org/10.1016/j.ensm.2017.01.002
- Górka J., Vix-Guterl C., Matei Ghimbeu C. // C 2016. V. 2. № 4. P. 24. https://doi.org/10.3390/c2040024
- Zhao G., Wang X., Negnevitsky M. // iScience 2022. V. 25. № 2. P. 103744. https://doi.org/10.1016/j.isci.2022.103744
- Romanovich M.A., Ospischev P.I., Romanovich L.G. et al. // Krasn. Sci. 2020. V. 9. № 2. P. 206. https://doi.org/10.12731/2070-7568-2020-2-206-223
- Li M. // Energies 2023. V. 16. № 24. P. 8004. https://doi.org/10.3390/en16248004
- Xia S., Wu X., Zhang Z. et al. // Chem 2019. V. 5. № 4. P. 753. https://doi.org/10.1016/j.chempr.2018.11.013
- Fei Pei, Yan X., Lei F. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601491
- Zhang S., Steubing B., Karlsson Potter H. et al. // Resour. Conserv. Recycl. 2024. V. 202. P. 107362. https://doi.org/10.1016/j.resconrec.2023.107362
- Alšauskas O., Connelly E., Huismans M. et al. // Global EV Outlook 2024: annual report. 2024. P. 1.
- Royo S., Ballesta-Garcia M. // Appl. Sci. 2019. V. 9. № 19. P. 4093. https://doi.org/10.3390/app9194093
- Liu Z., Zhang F., Hong X. // IEEE/ASME Trans. Mechatronics 2022. V. 27. № 1. P. 58. https://doi.org/10.1109/TMECH.2021.3058173
- Zhou Y., Xu M. // Res. Transp. Econ. 2023. V. 100. P. 101326. https://doi.org/10.1016/j.retrec.2023.101326
- Selim T.H., Gad-El-Rab M. Artificial Intelligence and the Global Automotive Industry. Cham: Springer Nature Switzerland (2024) 237. https://doi.org/10.1007/978-3-031-49979-1_3
- Каульбарс А.А. // Отчет счетной палаты Российской Федерации. 2021. С. 113.
- Samsonov N. // Spat. Econ. 2018. V. 3. P. 43. https://doi.org/10.14530/se.2018.3.043-066
- Salomatin A.M., Zinov’eva I. V., Zakhodyaeva Y.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601144
- Li Y., Hu Y.-S., Qi X. et al. // Energy Storage Mater. 2016. V. 5. P. 191. https://doi.org/10.1016/j.ensm.2016.07.006
- Yu P., Tang W., Wu F.F. et al. // Rare Met. 2020. V. 39. № 9. P. 1019. https://doi.org/10.1007/s12598-020-01443-z
- Baskar A.V., Singh G., Ruban A.M. et al. // Adv. Funct. Mater. 2023. V. 33. https://doi.org/10.1002/adfm.202208349
- Bartoli M., Piovano A., Elia G.A. et al. // Renew. Sustain. Energy Rev. 2024. V. 194. P. 114304. https://doi.org/10.1016/j.rser.2024.114304
- Idamayanti D., Rochliadi A., Iqbal M. et al. // J. Energy Storage 2024. V. 89. P. 111491. https://doi.org/10.1016/j.est.2024.111491
- Sprenkle V., Li B., Zhang L. et al. // Flow Batteries Technology Strategy Assessment: summary report. 2023. P. 1.
Supplementary files
