CORRELATION BETWEEN ELECTRICAL PROPERTIES AND STRUCTURAL AND MORPHOLOGICAL CHARACTERISTICS OF SAMPLES IN THE QUASI-BINARY EUTECTIC SYSTEM Ba2In2O5-Ba2InNbO6

Cover Page

Cite item

Full Text

Abstract

The structural and morphological properties of samples in the eutectic systemBa2In2O5—Ba2InNbO6 were studied when processed below and above the eutectic temperature. Has been determined the presence of a narrow region of homogeneity — solid solution Ba2In2-xNbxO5+x (x ≤ 0.05) and the formation of composites of composition (1 - y)Ba2In1.95Nb0.05O5.05 • yBa2InNbO6. In composites with y ≤ 0.15 for the main phase, a structure with a disordered arrangement of oxygen vacancies is stabilized. The total electrical conductivity in a dry air atmosphere is determined primarily by oxygen-ion transfer and increases for both solid solution and composites; the maximum increase by ~2 orders of magnitude is observed for composite samples with y = 0.15, 0.25, processed above the eutectic temperature. The increase in electrical conductivity is due to the combined influence of structural and morphological factors. Composites processed above the eutectic temperature are characterized by a special morphology — a layer of submicron-sized crystallites is formed on the surface of the grains of the main phase during crystallization of the eutectic, which determines the appearance of the compositional effect of electrical conductivity.

About the authors

E. S Matveev

Ural Federal University named after. first President of Russia B.N. Yeltsin

Email: Egor.Matveev@urfu.ru
Ekaterinburg, Russia

N. A Kochetova

Ural Federal University named after. first President of Russia B.N. Yeltsin

Ekaterinburg, Russia

I. V Alyabysheva

Ural Federal University named after. first President of Russia B.N. Yeltsin

Ekaterinburg, Russia

I. E Animitsa

Ural Federal University named after. first President of Russia B.N. Yeltsin

Ekaterinburg, Russia

References

  1. Laguna-Bercero M.A. // J. Power Sources. 2012. V. 203. P. 4. https://doi.org/10.1016/j.jpowsour.2011.12.019
  2. Filippov S.P., Yaroslavtsev A.B. // Russ. Chem. Rev. 2021. V. 90. № 6. P. 627. https://doi.org/10.1070/RCR5014
  3. Kochetova N., Animitsa I., Medvedev D. et al. // RSC Adv. 2016. V. 6. № 77. P. 73222. https://doi.org/10.1039/C6RA13347A
  4. Касьянова А.В., Руденко А.О., Лягаева Ю.Г. и др. // Мембраны и мембранные технологии. 2021. V. 11. № 2. P. 83. https://doi.org/10.1134/S221811722102005X
  5. Zhang G. // Solid State Ion. 1995. V. 82. № 3-4. P. 161. https://doi.org/10.1016/0167-2738(95)00196-2
  6. Speakman S. // Solid State Ionics. 2002. V. 149. № 3-4. P. 247. https://doi.org/10.1016/S0167-2738(02)00175-3
  7. Noirault S., Quarez E., Piffard Y. et al. // Solid State Ionics. 2009. V. 180. № 20-22. P. 1157. https://doi.org/10.1016/j.ssi.2009.06.010
  8. Kochetova N.A., Alyabysheva I.V., Animitsa I.E. // Russ. J. Inorg. Chem. 2015. V. 51. № 9. P. 877. https://doi.org/10.1134/S1023193515090086
  9. Mancini A., Shin J.F., Orera A. et al. // Dalton Trans. 2012. V. 41. № 1. P. 50. https://doi.org/10.1039/C1DT11660F
  10. Pring A., Tarantino S.C., Tenailleau C. et al. // Am. Mineral. 2008. V. 93. № 4. P. 591. https://doi.org/10.2138/am.2008.2610
  11. Ito S., Mori T., Yan P. et al. // RSC Adv. 2017. V. 7. № 8. P. 4688. https://doi.org/10.1039/C6RA27418H
  12. Rolle A., Giridharan N.V., Roussel P. et al. // MRS Proceedings. 2004. V. 835. P. K2.4. https://doi.org/10.1557/PROC-835-K2.4
  13. Shin J.F., Orera A., Apperley D.C. et al. // J. Mater. Chem. 2011. V. 21. № 3. P. 874. https://doi.org/10.1039/C0JM01978J
  14. Tarasova N., Animitsa I. // J. Alloys Compd. 2018. V. 739. P. 353. https://doi.org/10.1016/j.jallcom.2017.12.317
  15. Uvarov N.F. // J. Solid State Electrochem. 2011. V. 15. № 2. P. 367. https://doi.org/10.1007/s10008-008-0739-4
  16. Bagryantseva I.N., Ponomareva V.G. // Inorg. Mater. 2016. V. 52. № 12. P. 1276. https://doi.org/10.1134/S0020168516120025
  17. Guseva A.F., Pestereva N.N., Pyrlik E.V. et al. // Inorg. Mater. 2022. V. 58. № 6. P. 612. https://doi.org/10.1134/S0020168522060036
  18. Guseva A.F., Pestereva N.N. // Russ. J. Inorg. Chem. 2023. V. 68. № 3. P. 363. https://doi.org/10.1134/S0036023622602525
  19. Alyabysheva I.V., Kochetova N.A., Matveev E.S. et al. // Bull. Russ. Acad. Sci: Phys. 2017. V. 81. № 3. P. 384. https://doi.org/10.3103/S1062873817030030
  20. Kochetova N., Alyabysheva I., Animitsa I. // Solid State Ionics. 2017. V. 306. P. 118. https://doi.org/10.1016/j.ssi.2017.03.021
  21. Kochetova N.A., Alyabysheva I.V., Matveev E.S. et al. // J. Siberian Federal University. Chem. 2023. V. 16. № 3. P. 383.
  22. Martínez J.-R., Mohn C.E., St0len S. et al. // J. Solid State Chem. 2007. V. 180. № 12. P. 3388. https://doi.org/10.1016/j.jssc.2007.09.034
  23. Ruseikina A.V., Andreev O.V. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 611. https://doi.org/10.7868/S0044457X1705021X
  24. Kalinina T.A., Lykova L.N., Kovba L.M. et al. // Russ. J. Inorg. Chem. 1983. V. 28. № 2. P. 466.
  25. Baller F. Dissertation in Chemistry. Universitat Osnabruck, Osnabruck, 1996.
  26. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  27. Yin J., Zou Z., Ye J. // J. Phys. Chem. B. 2003. V. 107. № 1. P. 61. https://doi.org/10.1021/jp026403y
  28. Kochetova N.A., Alyabysheva I.V., Matveev E.S. et al. // Russ. J. Electrochem. 2017. V. 53. № 6. P. 658. https://doi.org/10.1134/S102319351706009X
  29. Quarez E., Noirault S., Caldes M.T. et al. // J. Power Sources. 2010. V. 195. № 4. P. 1136. https://doi.org/10.1016/j.jpowsour.2009.08.086
  30. Kochetova N.A., Alyabysheva I.V., Belova K.G. et al. // Inorg. Mater. 2015. V. 51. № 11. P. 1120. https://doi.org/10.1134/S0020168515110047
  31. Hideshima N., Hashizume K. // Solid State Ionics. 2010. V. 181. № 37-38. P. 1659. https://doi.org/10.1016/j.ssi.2010.09.029
  32. Rey J.F.Q., Ferreira F.F., Muccillo E.N.S. // Solid State Ionics. 2008. V. 179. № 21-26. P. 1029. https://doi.org/10.1016/j.ssi.2007.12.007
  33. Maier J. // Prog. Solid State Chem. 1995. V. 23. № 3. P. 171. https://doi.org/10.1016/0079-6786(95)00004-E
  34. Maier J. // Electrochem. 2000. V. 68. № 6. P. 395. https://doi.org/10.5796/electrochemistry.68.395
  35. Maier J. // Solid State Ionics. 2003. V. 157. № 1-4. P. 327. https://doi.org/10.1016/S0167-2738(02)00229-1
  36. Maier J. // Nat. Mater. 2005. V. 4. № 11. P. 805. https://doi.org/10.1038/nmat1513
  37. Maier J. // Chem. Mater. 2014. V. 26. № 1. P. 348. https://doi.org/10.1021/cm4021657

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).