STRUCTURE AND RELATIVE STABILITY OF ISOMERS OF OXO- AND OXOHYDROXOALKOXO DERIVATIVES OF RHENIUM AND MOLYBDENUM RexMo4-xO6-n(ОН)n(OMe)10 (x = 0-4, n = 1, 2, 4)

Cover Page

Cite item

Full Text

Abstract

Quantum chemistry methods were used to calculate heteronuclear clusters of oxoalkoxo-RexMo4-xO6(OMe)10 and oxohydroxoalkoxo-RexMo4-xO6-n(ОН)n(OMe)10, (n = 1, 2, 4) rhenium and molybdenum complexes. The core of the clusters is a rhombus of four metal atoms connected by bridging oxygen atoms along the sides and a small diagonal. Alkoxo groups occupy terminal positions. The structure and relative stability of the isomers of the positions of metal heteroatoms along the vertices of the rhombus are calculated. The theoretical differences in total energies relative to the most stable isomer, the length of metal-metal bonds, bond order indices and the sum of these indices for each isomer are determined. It has been established that in some cases, along with M-O-M' bridging bonds, metal-metal bonds are formed.

About the authors

E. G Il’in

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: eg_ilin@mail.ru
Moscow, Russia

V. G Yarzhemsky

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

I. I Bannykh

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

A. S Parshakov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

References

  1. Lunk H.-J., Drobot D.V., Hartl H. // ChemTexts. 2021. V. 7. № 6. https://doi.org/10.1007/s40828-020-00123-w
  2. Kessler V.G. // Comprehensive Inorganic Chemistry II: From Elements to Applications. 2013. P. 455. ISBN 10:008097774X
  3. Наумов А.В. // Изв. ВУЗов. Цветные металлы. 2007. № 6. С. 36.
  4. Ермаков А.И., Белоусов В.В., Дробот Д.В. и др. // Коорд. химия. 2006. Т. 32. № 10. С. 732.
  5. Shcheglov P.A., Drobot D.V., Seisenbaeva G.A. et al. // Inorg. Chem. Commun. 2001. V. 4. № 5. P. 227. https://doi.org/10.1016/s1387-7003(01)00154-x
  6. Дробот Д.В., Щеглов П.А., Сейсенбаева Г.А. и др. // Изв. ВУЗов. Цветная металлургия. 2002. № 6. С. 32.
  7. Nikonova O.A., Jansson K., Kessler V.G. et al. // Inorg. Chem. 2008. V. 47. № 4. P. 1295. https://doi.org/10.1021/ic701781k
  8. Bryan J.C., Wheeler D.R., Clark D.L. et al. // J. Am. Chem. Soc. 1991. V. 113. № 8. P. 3184. https://doi.org/10.1021/Ja00008A064
  9. Куликова Е.С., Дробот Д.В., Яржемский В.Г. и др. // Журн. неорган. химии. 2018. Т. 63. № 11. C. 1425. https://doi.org/10.1134/S0044457X18110119
  10. Бандура А.В., Лукьянов С.И., Домнин А.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. C. 1588. https://doi.org/10.31857/S0044457X23601086
  11. Чаркин О.П. // Журн. неорган. химии. 2023. Т. 68. № 4. C. 499. https://doi.org/10.31857/S0044457X23700186
  12. Zhabanov Yu.A., Giricheva N.I., Islyaikin M.K. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 350. https://doi.org/10.1134/S0036023622030172
  13. Ильин Е.Г., Бейрахов А.Г., Яржемский В.Г. и др. // Журн. неорган. химии. 2018. Т. 63. № 4. C. 462. https://doi.org/10.7868/S0044457X18040116
  14. Норов Ю.В., Паршаков А.С., Яржемский В.Г. и др. // Журн. неорган. химии. 2010. Т. 55. № 12. C. 2033.
  15. Ильин Е.Г., Паршаков А.С., Буряк А.К. и др. // Докл. Акад. наук. 2009. Т. 427. № 5. С. 641.
  16. Lin S.-J., Gong W.-C., Wang L.-F. et al. // Theor. Chem. Acc. 2014. V. 133. P. 1435. https://doi.org/10.1007/s00214-013-1435-8
  17. Molek K.S., Jaeger T.D., Duncan M.A. // J. Chem. Phys. 2005. V. 123. № 14. P. 144313. https://doi.org/10.1063/1.2050650
  18. Dong F., Heinbuch S., He S.G. et al. // J. Chem. Phys. 2006. V. 125. № 16. P. 164318. https://doi.org/10.1063/1.2358980
  19. Cordier S., Loisel C., Perrin C. et al. // J. Solid State Chem. 1999. V. 147. № 1. P. 350. https://doi.org/10.1006/jssc.1999.8337
  20. Wright D.A., Williams D.A. // Acta Crystallogr., Sect. B. 1968. V. 24. № 8. P. 1107. https://doi.org/10.1107/S0567740868003766
  21. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. № 11. P. 1347. https://doi.org/10.1002/jcc.540141112
  22. Barca G.M.J., Bertoni C., Carrington L. et al. // J. Chem. Phys. 2020. V. 152. № 15. P. 154102. https://doi.org/10.1063/5.0005188
  23. Dunning Jr.T.H., Hay P.J. // In Modern Theoretical Chemistry, Ed. Schaefer H.F. III (Plenum, New York). 1977. V. 3. P. 1. https://doi.org/10.1007/978-1-4757-0887-5
  24. Hay P.J., Wadt W.R. // J. Chem. Phys. 1985. V. 82. № 1. P. 299. https://doi.org/10.1063/1.448975
  25. Becke A.D. // J. Chem. Phys. 1993. V. 98. № 7. P. 5648. https://doi.org/10.1063/1.464913
  26. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. № 2. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  27. Andrae D., Haeussermann U., Dolg M.H. et al. // Theor. Chem. Acc. 1990. V. 77. № 2. P. 123. https://doi.org/10.1007/BF01114537
  28. Perdew J.P., Burke K., Ernzerhof M. et al. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  29. Lu T., Chen F. // Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
  30. Mayer I. // Chem. Phys. Lett. 1983. V. 97. № 3. P. 270. https://doi.org/10.1016/0009-2614(83)80005-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).