THE INFLUENCE OF HEAT TREATMENT CONDITIONS ON THE PRODUCTION OF ULTRAFINE IRON-ERBIUM GARNET POWDERS USING ANION RESIN EXCHANGE PRECIPITATION

Capa

Citar

Texto integral

Resumo

Iron-erbium garnet is characterised by low magnetic losses, relatively high magnetisation, high thermal stability and it is used in radio electronics, computing, laser and microwave technology. This work proposes a method for the preparation of nanostructured Er3Fe5O12 powders, including the anion-exchange resin coprecipitation of erbium and iron(III) ions and further temperature treatment of the products. Optimal conditions for anion exchange resin precipitation of a stoichiometric highly active precursor were determined and the influence of the heat treatment regime on the formation process and stability of erbium ferrite-garnet nanoparticles was investigated. The resulting nanomaterials were characterised by X-ray phase analysis, electron microscopy, thermal analysis and Mossbauer spectroscopy. This synthesis method ensures the formation of iron-erbium garnet with a particle size of 26 ± 4 nm at a temperature of 800℃. The established patterns can be used to develop new methods for the synthesis of rare earth compounds with a garnet structure.

Sobre autores

S. Saikova

Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center (Federal Research Center); Siberian Federal University

Krasnoyarsk, Russia

E. Kirshneva

Siberian Federal University

Email: eakirshneva@gmail.com
Krasnoyarsk, Russia

N. Fadeeva

Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center (Federal Research Center)

Krasnoyarsk, Russia

O. Bayukov

Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center (Federal Research Center)

Email: khorelena@gmail.com
Krasnoyarsk, Russia

Yu. Knyazev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center (Federal Research Center)

Krasnoyarsk, Russia

M. Volochaev

Kirensky Institute of Physics, Krasnoyarsk Scientific Center (Federal Research Center)

Krasnoyarsk, Russia

A. Samoilo

Institute of Chemistry and Chemical Technology, Krasnoyarsk Science Center (Federal Research Center)

Krasnoyarsk, Russiaa

Bibliografia

  1. Ristic M., Nowik I., Popovic S. et al. // Mater. Lett. 2003. V 57. № 16-17. Р. 2584. https://doi.org/10.1016/S0167-577X(02)01315-0
  2. Lataifeh M.S., Mahmood S., Thomas M.F. // Phys. B: Condens. Matter. 2002. V. 321. № 1-4. Р. 143. https://doi.org/10.1016/S0921-4526(02)00840-2
  3. Pavasaryte L., Katelnikovas A., Momot A. et al. // J. Lumin. 2019. V. 212. Р. 14. https://doi.org/10.1016/j.jlumin.2019.04.005
  4. Cornelissen L.J., Liu J., Duine R.A. et al. // Nat. Phys. 2015. V. 11.№ 12. Р. 1022. https://doi.org/10.1038/nphys3465
  5. Boudiar T., Payet-Gervy B., Blanc-Mignon M.-F. et al. // J. Magn. Magn. Mater. 2004. V. 284. Р. 77. https://doi.org/10.1016/j.jmmm.2004.06.046
  6. Tholkappiyan R., Vishista K. // Appl. Surf. Sci. 2015. V. 351. Р. 1016. https://doi.org/10.1016/j.apsusc.2015.05.193
  7. Petrov D. //J. Chem. Thermodyn. 2015. V. 87. Р. 136. https://doi.org/10.1016/j.jct.2015.03.005
  8. Nakamoto R., Xu B., Xu C. et al. // Phys. Rev. B. 2017. V. 95. № 2. Р. 024434. https://doi.org/10.1103/PhysRevB.95.024434
  9. Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. № 6. Р. 1272. https://doi.org/10.1107/S0021889811038970
  10. Tomasello B., Mannix D., Geprags S. et al. // Ann. Phys. (NY). 2022. V. 447. Р. 169117. https://doi.org/10.1016/j.aop.2022.169117
  11. Maignan A., Singh K., Simon Ch. et al. // J. Appl. Phys. 2013. V. 113. № 3. https://doi.org/10.1063/1.4776716
  12. Zheng J., Fu Q., Chen X. et al. //J. Mater. Sci. - Mater. Electron. 2021. V. 32.№ 1. Р. 290. https://doi.org/10.1007/s10854-020-04775-9
  13. Bsoul I., Olayaan R., Lataifeh M. et al. // Mater. Res. Express. 2019. V. 6. №7. Р. 076114. https://doi.org/10.1088/2053-1591/ab198b
  14. Ristic M., Popovic S., Music S. et al. // J. Alloys Compd. 1997. V 256. № 1-2. Р. 27. https://doi.org/10.1016/S0925-8388(96)02951-9
  15. Patron L., Carp O., Mindru I. et al. //J. Therm. Anal. Calorim. 2008. V. 92. № 1. Р. 307. https://doi.org/10.1007/s10973-007-8839-4
  16. Xu H., Yang H., Lu L. // J. Mater. Sci. - Mater. Electron. 2008. V. 19.№ 6. Р. 509. https://doi.org/10.1007/s10854-007-9372-8
  17. Shaiboub R.E., Ibrahim N.B. // J. Nanosci. 2014. V. 2014. P. 158946. https://doi.org/10.1155/2014/158946
  18. Tsidaeva N., Nakusov A., Khaimanov S. et al. // Nanomaterials. 2021. V. 11.№ 4. Р. 972. https://doi.org/10.3390/nano11040972
  19. Пашков Г.Л., Сайкова С.В., Пантелеева М.В. и др. // Теор. основы хим. технологии. 2016. Т. 50. № 4. С. 575.
  20. Сайкова С.В., Киршнева Е.А., Фадеева Н.П. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 158.
  21. Сайкова С.В., Пантелеева М.В., Киршнева Е.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 10. С. 1191.
  22. Ivantsov R., Evsevskaya N., Saikova S. et al. // Mater. Sci. Eng. B. 2017. V. 226. Р. 171. https://doi.org/10.1016/j.mseb.2017.09.016.
  23. Пашков Г.Л., Сайкова С.В., Пантелеева М.В. и др. // Химия и химическая технология. 2013. Т. 56. № 8. С. 77.
  24. Пашков Г.Л., Сайкова С.В., Пантелеева М.В. и др. // Стекло и керамика. 2013. № 70. С. 225.
  25. Пашков Г.Л., Сайкова С.В., Пантелеева М.В. и др. // Стекло и керамика. 2014. № 71. С. 57.
  26. Kimizuka N., Yamamoto A., Ohashi H. et al. //J. Solid State Chem. 1983. V. 49.№ 1. Р. 65. https://doi.org/10.1016/0022-4596(83)90217-7
  27. Kanke Y., Navrotsky A. // J. Solid State Chem. 1998. V. 141. № 2. Р. 424. https://doi.org/10.1006/jssc.1998.7969
  28. Glasser L. //J. Chem. Thermodyn. 2014. V. 78. Р. 93. https://doi.org/10.1016/j.jct.2014.06.013
  29. Opuchovic O., Kareiva A., Mazeika K. et al. //J. Magn. Magn. Mater. 2017. V. 422. Р. 425. https://doi.org/10.1016/j.jmmm.2016.09.041
  30. Сайкова С.В., Пашков Г.Л., Пантелеева М.В. Реакционно-ионообменные процессы извлечения цветных металлов и синтеза дисперсных материалов. Красноярск: Сиб. федер. ун-т, 2018. 198 c.
  31. Шапиро С.А. Аналитическая химия. М.: Высшая школа, 1973. С. 344.
  32. Spahiu K., Bruno J. A selected thermodynamic database for REE to be used in HLNW performance assessment exercises. Cerdanyola: MBT Tecnologia Ambiental, 1995. Р. 91. https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/019/28019633.pdf?r=1
  33. Evsevskaya N., Pikurova E., Saikova S.V. et al. // ACS Omega. 2020. V. 5. № 9. Р. 4542. https://doi.org/10.1021/acsomega.9b03877
  34. Saikova S., Pavlikov A., Karpov D. et al. // Materials. 2023. V. 16. № 6. Р. 2318. https://doi.org/10.3390/ma16062318
  35. Tretyakov Y.D., Sorokin V.V., Kaul A.R. et al. // J. Solid State Chem. 1976. V. 18. № 3. P. 253. https://doi.org/0.1016/0022-4596(76)90104-3
  36. Dabrowa J., Cieslak J., Zajusz M. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 6. Р. 3844. https://doi.org/10.1016/j.jeurceramsoc.2020.12.052
  37. Mohaidat Q.I., Lataifeh M., Mahmood S.H. et al. //J. Supercond. Nov. Magn. 2017. V. 30. Р. 2135. https://doi.org/10.1007/s10948-017-4003-y
  38. Gutlich P., Bill E., Trautwein A.X. Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications. Springer Science & Business Media, 2010. Р. 569.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).