PHOTOLYSIS AND PHOTODEGRADATION OF N-SUBSTITUTED PHTHALIMIDES WITH A CYMANTRENYL MOIETY

Cover Page

Cite item

Full Text

Abstract

The photochemical behavior of substituted phthalimides with carboxylate groups associated with the cymantrenyl fragment was studied by infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, UV-visible spectroscopy and cyclic voltammetry (CVA). During the formation of hemilabile dicarbonyl chelate complexes, a sharp change in the electronic, electrochemical and optical properties of compounds is observed. According to the dynamic light scattering (DLS) method, further irradiation of solutions of these complexes leads to the formation of previously undescribed stable nanoparticles in liquid media containing manganese in two degrees of oxidation Mn2+/Mn1+ and a phthalimide fragment associated with a Cp-ring coordinated or uncoordinated with manganese(I).

About the authors

E. S Kelbysheva

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: kellena80@mail.ru
Moscow, Russia

T. V Strelkova

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Moscow, Russia

A. V Babaytsev

Moscow Aviation Institute, National Research University

Moscow, Russia

A. V Naumkin

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Moscow, Russia

L. N Telegina

Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences

Moscow, Russia

References

  1. Payne A.J., Hendsbee A.D., McAfee S.M. et al. // Phys. Chem. Chem. Phys. 2016. V. 18. P. 14709. https://doi.org/10.1039/c6cp01596d
  2. Suven Das // New J. Chem. 2021. V. 45. P. 20519. https://doi.org/10.1039/d1nj03924e
  3. Taku Shoji, Nanami Iida, Akari Yamazaki et al. // Org. Biomol. Chem. 2020. V. 18. P. 2274. https://doi.org/10.1039/d0ob00164c
  4. Weichao Zhang, Jianhua Huang, Jianqiu Xu et al. // Adv. Energy Mater. 2020. P. 2001436. https://doi.org/10.1002/aenm.202001436
  5. Hendsbee A.D., McAfee S.M., Sun J.-P. et al. // J. Mater. Chem. C. 2015. V. 3. P. 8904. https://doi.org/10.1039/c5tc01877c
  6. Guobing Zhang, Jinghua Guo, Jie Zhang et al. // Polym. Chem. 2015. V. 6. P. 418. https://doi.org/10.1039/C4PY00916A
  7. Cavallari M.R., Pastrana L.M., Sosa C.D.F. et al. // Materials. 2021. V. 14. P. 3. https://doi.org/10.3390/ma14010003
  8. Dumur F., Ibrahim-Ouali M., Gigmes D. // Appl. Sci. 2018. V. 8. P. 539. https://doi.org/10.3390/app8040539
  9. Yuanyuan Qin, Guoping Li, Ting Qi et al. // Mater. Chem. Front. 2020. V. 4. P. 1554. https://doi.org/10.1039/d0qm00084a
  10. Venkatramaiah N., Dinesh Kumar G., Chandrasekaran Y. et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 3838. https://doi.org/10.1021/acsami.7b11025
  11. Kushwaha N., Kaushik D. // J. Appl. Pharm. Sci. 2016. V. 6. P. 159. https://doi.org/10.7324/JAPS.2016.60330
  12. Mosallanejad B. // Chem. Methodol. 2019. V. 3. P. 261. https://doi.org/10.22034/chemm.2018.155768.1109
  13. Chapran M., Lytvyn R., Begel C. et al. // Dyes Pigm. 2019. V. 162. P. 872. https://doi.org/10.1016/j.dyepig.2018.11.022
  14. Fernandez-Garcia M., de la Fuente J.L., Madruga E.L. // Polym. Bull. 2000. V. 45. P. 397. https://doi.org/10.1007/s002890070013
  15. Salas-Lopez K., Garcia-Castro M.A., Amador P. et al. // Thermochim. Acta. 2021. V. 697. P. 178861. https://doi.org/10.1016/j.tca.2021.178861
  16. Seunghae Hwang, Hyun-seung Kim, Ji Heon Ryu et al. // J. Power Sources. 2018. V. 395. P. 60. https://doi.org/10.1016/j.jpowsour.2018.05.053
  17. Donghan Xu, Cuijuan Zhang, Yihan Zhen et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 8045. https://doi.org/10.1021/acsaem.1c01362
  18. Jun-ichi Nishida, Hokuto Ohura, Yasuyuki Kita et al. // J. Org. Chem. 2016. V. 81. P. 433. https://doi.org/10.1021/acs.joc.5b02191
  19. Blagoeva B., Stoilova A., Dimov D. et al. // Photochem. Photobiol. Sci. 2021. V. 20. P. 687. https://doi.org/10.1007/s43630-021-00056-4
  20. Asiwal E.P., Shelar D.S., Gujja C.S. et al. // New J. Chem. 2022. V. 46. P. 12679. https://doi.org/10.1039/D2NJ02263J
  21. Nanbedeh S., Faghihi K. //J. Fluoresc. 2021. V. 31. P. 517. https://doi.org/10.1007/s10895-020-02680-2
  22. Tavakoli M., Ahmadvand H., Alaei M. et al. // Spectrochim. Acta, Part A. 2021. V. 246. P. 118952. https://doi.org/10.1016/j.saa.2020.118952
  23. Abdel-Aziz A.A.-M., Angeli A., El-Azab A.S. et al. // Bioorg. Chem. 2019. V. 84. P. 260. https://doi.org/10.1016/j.bioorg.2018.11.033
  24. Philoppes J.N., Lamie P.F. // Bioorg. Chem. 2019. V. 89. P. 102978. https://doi.org/10.1016/j.bioorg.2019.102978
  25. Ai-Ling Sun, Chao-Chao Wang, Hao Zhou et al. // Lett. Drug Des. Discovery. 2022. V. 19. P. 769. https://doi.org/10.2174/1570180819666220301141149
  26. Rus A., Bolanos-Garcia V.M., Bastida A. et al. // Catalysts. 2022 V. 12. P. 503. https://doi.org/10.3390/catal12050503
  27. Sahin K., Orhan M.D., Avsar T. et al. // ACS Pharmacol. Transl. Sci. 2021. V. 4. P. 1111. https://doi.org/10.1021/acsptsci.0c00210
  28. Rani A., Sharma A., Legac J. et al. // Bioorg. Med. Chem. 2021. V. 39. P. 116159. https://doi.org/10.1016/j.bmc.2021.116159
  29. Келбышева Е.С., Стрелкова Т.В., Езерницкая М.Г. и др. // Журн. неорган. химии. 2023. Т. 68. P. 1265. https://doi.org/10.31857/S0044457X23600949
  30. Kelbysheva E.S., Ezernitskaya M.G., Aysin R.R. et al. // Molecules. 2023. V. 28. P. 7098. https://doi.org/10.3390/molecules28207098
  31. Lyszczek R, Mazur L., Rzaczyn'ska Z. et al. // Inorg. Chem. Commun. 2008. V. 11. P. 1091. https://doi.org/10.1016/j.inoche.2008.05.031
  32. Гинзбург А.Г. // Успехи химии. 2009. V. 78. P. 211.
  33. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. Chichester: Wiley, 1992. С. 280.
  34. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. P. 31. https://doi.org/10.1116/1.1247888
  35. Stranick M.A. // Surf. Sci. Spectra. 1999. V. 6. P. 39. https://doi.org/10.1116/1.1247889
  36. Militello M.C., Gaarenstroom S.W. // Surf. Sci. Spectra. 2001. V. 8. P. 200. https://doi.org/10.1116/11.20020401
  37. Biesinger M.C., Payne B.P., Grosvenor A.P. et al. // Appl. Surf. Sci. 2011. V. 257. P. 2717. https://doi.org/10.1016/j.apsusc.2010.10.051
  38. Qin X., Sun H., Zaera F. // J. Vac. Sci. Technol., А. 2012. V. 30. P. 01A112. https://doi.org/10.1116/1.3658373
  39. Ilton E.S., Post J.E., Heaney P.J. et al. // Appl. Surf. Sci. 2016. V. 366. P. 475. https://doi.org/10.1016/j.apsusc.2015.12.159
  40. Moulder J.F., Stickle W.F., Sobol P.E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer, 1995.
  41. Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W. et al. NIST X-ray Photoelectron Spectroscopy Database (SRD 20), Version 5.0. 2023. http://srdata.nist.gov/xps/, https://dx.doi.org/10.18434/T4T88K
  42. Sedla'k M. //J. Phys. Chem. B. 2006. V 110. P 4329. https://doi.org/10.1021/jp0569335
  43. Wishard A., Gibb B.C. // Beilstein J. Org. Chem. 2018. V. 14. P. 2212. https://doi.org/10.3762/bjoc.14.195
  44. Chakrabarty K., Weiss R.A., Sehgal A. et al. // Macromolecules. 1998. V. 31. P. 7390. https://doi.org/10.1021/ma980604b

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).