CHEMICAL PRECIPITATION OF BaSn(OH)6 AND ITS THERMAL DESTRUCTION IN THE PROCESS OF BaSnO3 PREPARATION
- 作者: Simonenko T.L1, Simonenko N.P1, Rebrov R.A1, Simonenko E.P1
-
隶属关系:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- 期: 卷 69, 编号 12 (2024)
- 页面: 1667-1676
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/289001
- DOI: https://doi.org/10.31857/S0044457X24120014
- EDN: https://elibrary.ru/IXVPHC
- ID: 289001
如何引用文章
详细
作者简介
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: egorova.offver@mail.ru
Moscow, Russia
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
R. Rebrov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
参考
- Mishra G., Minor C., Tiwari A. // Mater. Chem. Phys. 2023. V. 295. P. 127042. https://doi.org/10.1016/j.matchemphys.2022.127042
- Ochoa Munoz Y.H., Ponce M., Rodrguez Paez J.E. // Powder Technol. 2015. V. 279. P. 86. https://doi.org/10.1016/j.powtec.2015.03.049
- Alammar T., Mudring A.-V. // Inorg. Chem. 2024. V. 63. № 14. P. 6132. https://doi.org/10.1021/acs.inorgchem.3c02874
- Chawla S., Aggarwal G., Kumar A. et al. // ChemRxiv. 2021. P. 1. https://doi.org/10.26434/chemrxiv-2021-c0500
- Jaim H.M.I., Lee S., Zhang X. et al. // Appl. Phys. Lett. 2017. V. 111. № 17. https://doi.org/10.1063/1.4996548
- Song X., Wang G., Zhou L. et al. // ACS Appl. Energy Mater. 2023. V. 6. № 18. P. 9756. https://doi.org/10.1021/acsaem.3c01870
- Lee S., Wang H., Gopal P. et al. // Chem. Mater. 2017. V. 29. № 21. P. 9378. https://doi.org/10.1021/acs.chemmater.7b03381
- Ochoa Y.H., Schipani F., Aldao C.M. et al. // J. Mater. Res. 2015. V. 30. № 22. P. 3423. https://doi.org/10.1557/jmr.2015.318
- Vereshchagin S.N., Dudnikov V.A., Rabchevsky E.V. et al. //Trans. Ко1а Sci. Cent. RAS. Ser. Eng. Sci. 2023. V. 3. № 3. P. 76. https://doi.org/10.37614/2949-1215.2023.14.3.013
- Kumar U., Upadhyay S. // J. Electron. Mater. 2019. V. 48. № 8. P. 5279. https://doi.org/10.1007/s11664-019-07336-x
- Akbar N., Paydar S., Afzal M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 5531. https://doi.org/10.1016/j.ijhydene.2021.11.163
- Zvonareva I.A., Starostin G.N., Akopian M.T. et al. // J. Power Sources. 2023. V. 565. P. 232883. https://doi.org/10.1016/j.jpowsour.2023.232883
- Kumar A.A., Singh J., Rajput D.S. et al. // Mater. Sci. Semicond. Process. 2018. V. 83. P. 83. https://doi.org/10.1016/j.mssp.2018.04.023
- Purushotham Reddy N., Santhosh R., Fernandes J.M. et al. // Mater. Lett. 2022. V. 311. P. 131629. https://doi.org/10.1016/j.matlet.2021.131629
- Geelani K.A., Alyousef H.A., Dahshan A. et al. // Int. J. Hydrogen Energy. 2024. V. 81. P. 436. https://doi.org/10.1016/j.ijhydene.2024.07.116
- Nithyadharseni P., Reddy M.V., Ozoemena K.I. et al. // J. Electrochem. Soc. 2016. V. 163. № 3. P. A540. https://doi.org/10.1149/2.0961603jes
- Cha Y.L., Kim S.H. //J. Nanosci. Nanotechnol. 2020. V. 20. № 9. P. 5498. https://doi.org/10.1166/jnn.2020.17623
- Bhattacharya A., Zhang Y., Wu H. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. №20. P. 17461. https://doi.org/10.1007/s10854-020-04302-w
- Bhattacharya A., Jiang Y., Gao Q. et al. // J. Mater. Res. 2019. V. 34. № 12. P. 2067. https://doi.org/10.1557/jmr.2019.95
- Du H., Hu M., Li S. et al. // J. Food Compos. Anal. 2024. V. 133. P. 106475. https://doi.org/10.1016/j.jfca.2024.106475
- James K.K., Krishnaprasad P.S., Hasna K. et al. // J. Phys. Chem. Solids. 2015. V. 76. P. 64. https://doi.org/10.1016/j.jpcs.2014.07.024
- Gong L., Yu R., Ohta H. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6317. https://doi.org/10.1039/D3DT01097J
- Venkatesh G., Suganesh R., Jayaprakash J. et al. // Chem. Phys. Lett. 2022. V. 787. P. 139237. https://doi.org/10.1016/j.cplett.2021.139237
- Rajasekaran P., Arivanandhan M., Sato N. et al. // J. Alloys Compd. 2022. V. 894. P. 162335. https://doi.org/10.1016/j.jallcom.2021.162335
- Rajasekaran P., Arivanandhan M., Kumaki Y. et al. // CrystEngComm. 2020. V. 22. № 32. P. 5363. https://doi.org/10.1039/D0CE00702A
- Huang C., Wang X., Liu X. et al. //J. Eur. Ceram. Soc. 2016. V. 36.№ 3. P. 583. https://doi.org/10.1016/j.jeurceramsoc.2015.11.001
- Azad A.-M., Hon N.C. // J. Alloys Compd. 1998. V. 270. № 1-2. P. 95. https://doi.org/10.1016/S0925-8388(98)00370-3
- Berbenni V., Milanese C., Bruni G. et al. // Z. Naturforsch. B. 2012. V. 67. № 7. P. 667. https://doi.org/10.5560/znb.2012-0125
- Kurre R., Bajpai S., Bajpai P.K. // Mater. Sci. Appl. 2018. V. 09. №01. P. 92. https://doi.org/10.4236/msa.2018.91007
- Song Y.J., Kim S. //J. Ind. Eng. Chem. 2001. V. 7. № 3. P. 183.
- Haiduk Y.S., Korobko E.V., Radkevich L.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601065
- Athawale A.A., Bapat M.S. D.P.A. // J. Nanosci. Nanotechnol. 2008. V. 8. № 7. P. 3661. https://doi.org/10.1166/jnn.2008.012
- Zhong F., Zhuang H., Gu Q. et al. // RSC Adv. 2016. V. 6. № 48. P. 42474. https://doi.org/10.1039/c6ra05614h
- Lu W., Schmidt H. // J. Mater. Sci. 2007. V. 42. № 24. P. 10007. https://doi.org/10.1007/s10853-007-2069-9
- Sewify G.H., Shawky A. // J. Colloid Interface Sci. 2023. V. 648. P. 348. https://doi.org/10.1016/j.jcis.2023.05.201
- Licheron M., Jouan G., Husson E. // J. Eur. Ceram. Soc. 1997. V. 17. № 12. P. 1453. https://doi.org/10.1016/S0955-2219(97)00002-2
- Deepa A.S., Vidya S., Manu P.C. et al. // J. Alloys Compd. 2011. V. 509. № 5. P. 1830. https://doi.org/10.1016/j.jallcom.2010.10.056
- Stanulis A., Sakirzanovas S., Van Bael M. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 3. P. 643. https://doi.org/10.1007/s10971-012-2896-2
- Smirnova M.N., Kop’eva M.A., Nipan G.D. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601089
- Ahmed J., Blakely C.K., Bruno S.R. et al. // Mater. Res. Bull. 2012. V. 47. № 9. P. 2282. https://doi.org/10.1016/j.materresbull.2012.05.044
- Tao S., Gao F., Liu X. et al. // Sens. Actuators, B: Chem. 2000. V. 71. № 3. P. 223. https://doi.org/10.1016/S0925-4005(00)00618-3
- Buscaglia M.T., Leoni M., Viviani M. et al. //J. Mater. Res. 2003. V. 18. № 3. P. 560. https://doi.org/10.1557/JMR.2003.0072
- Lu W., Schmidt H. //J. Sol-Gel Sci. Technol. 2007. V. 42. № 1. P. 55. https://doi.org/10.1007/s10971-006-1508-4
- Koferstein R., Jager L., Zenkner M. et al. // J. Eur. Ceram. Soc. 2009. V. 29. № 11. P. 2317. https://doi.org/10.1016/j.jeurceramsoc.2009.01.026
- Loginov A.V., Mateyshina Y.G., Aparnev A.I. et al. // Russ. J. Appl. Chem. 2018. V. 91. № 10. P. 1660. https://doi.org/10.1134/S1070427218100130
- Bao M., Li W., Zhu P. // J. Mater. Sci. 1993. V. 28. № 24. P. 6617. https://doi.org/10.1007/BF00356405
- Huang C., Wang X., Shi Q. et al. // Inorg. Chem. 2015. V. 54. № 8. P. 4002. https://doi.org/10.1021/acs.inorgchem.5b00269
- Shin S.S., Yeom E.J., Yang W.S. et al. // Science (80—.). 2017. V. 356. № 6334. P. 167. https://doi.org/10.1126/science.aam6620
- Shepherd W., Wilms M., van Embden J. et al. // Chem. Commun. 2019. V. 55. № 79. P. 11880. https://doi.org/10.1039/C9CC04838C
- Lu W., Schmidt H. // Ceram. Int. 2008. V. 34. № 3. P. 645. https://doi.org/10.1016/j.ceramint.2007.01.002
- Loginov A.V., Aparnev A.I., Uvarov N.F. et al. // J. Compos. Sci. 2023. V. 7. № 11. P. 469. https://doi.org/10.3390/jcs7110469
- Marikutsa A., Rumyantseva M., Baranchikov A. et al. // Materials (Basel). 2015. V. 8.№9. P. 6437. https://doi.org/10.3390/ma8095311
- Zhang Y., Xue Z., Yu C. et al. // e-J. Surf. Sci. Nanotechnol. 2021. V. 19. P. 104. https://doi.org/10.1380/ejssnt.2021.104
补充文件
