Extraction of indium from sulfuric acid solutions to carbon composites modified with nanotubes
- Authors: Gakiev A.L.1, Troshkina I.D.1, Kryukov A.Y.1
-
Affiliations:
- Mendeleev University of Chemical Technology of Russia (MUCTR)
- Issue: Vol 70, No 1 (2025)
- Pages: 121–126
- Section: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.rcsi.science/0044-457X/article/view/286273
- DOI: https://doi.org/10.31857/S0044457X25010134
- EDN: https://elibrary.ru/CUXNEA
- ID: 286273
Cite item
Abstract
The regularities of the sorption extraction of indium from sulfuric acid solutions using composites based on activated carbons modified with carbon nanotubes are considered. Their surface was studied by scanning electron microscopy. The equilibrium and kinetic characteristics of the sorbents are obtained. Indium sorption isotherms have a convex shape and are described by the Langmuir equation. The approximation of kinetic data using pseudo-first and pseudo-second order models, internal diffusion, and Elovich showed that the highest correlation coefficient is observed when using a pseudo-second order model. The process of indium sorption is limited by external diffusion. The efficiency of the carbon composite during the extraction of indium in four sorption-desorption cycles has been verified.
Full Text

About the authors
A. L. Gakiev
Mendeleev University of Chemical Technology of Russia (MUCTR)
Author for correspondence.
Email: gakievadam@gmail.com
Russian Federation, Moscow, 125047
I. D. Troshkina
Mendeleev University of Chemical Technology of Russia (MUCTR)
Email: gakievadam@gmail.com
Russian Federation, Moscow, 125047
A. Y. Kryukov
Mendeleev University of Chemical Technology of Russia (MUCTR)
Email: gakievadam@gmail.com
Russian Federation, Moscow, 125047
References
- Abkhoshk E., Jorjani E., Al-Harahsheh M.S. // Hydrometallurgy. 2014. V. 149. P. 153. https://doi.org/10.1016/j.hydromet.2014.08.001
- Балихин А.В., Барковская О.Э. // Комплексное извлечение минерального сырья. 2017. № 3. С. 16.
- Yang J., Retegan T., Steenari B.M. // Sep. Purif. Technol. 2016. V. 166. P. 117. https://doi.org/10.1016/j.seppur.2016.04.021
- Федоров П.И., Акчурин Р.Х. Индий. М.: Наука, 2000. 276 с.
- Min Li, Xiaojing Meng, Kun Huang et al. // Hydrometallurgy. 2019. V. 186. P. 73. https://doi.org/10.1016/j.hydromet.2019.04.003
- Sultanbayeva G.S., Agatayeva A.A., Kaiynbayeva R.A. et al. // Crystals. 2022. V. 12. P. 1220. https://doi.org/10.3390/cryst12091220
- Diez F., Gomez J.M., Rodriguez A. et al. // Microporous Mesoporous Mater. 2020. V. 295. P. 109984. https://doi.org/10.1016/j.micromeso.2019.109984
- Xue-Zhen Gao, Zhiyong Cao, Changzhen Li et al. // New J. Chem. 2022. V. 46. № 39. Р. 18952. https://doi.org/10.1039/D2NJ03111F
- Alguacil F.J., Lopez F.A., Rodrigez O. et al. // Ecotoxicol. Environ. Saf. 2016. V. 130. P. 81. https://doi.org/10.1016/j.ecoenv.2016.04.008
- Mikhailovna C.R., Sultanbayeva G.S., Kaiynbayeva R.A. et al. // Sep. Sci. Technol. 2024. V. 59. № 6–9. P. 929. https://doi.org/10.1080/01496395.2024.2353170
- Новиков И.В., Свирский И.А., Титова С.М., Смирнов А.Л. // Физика. Технологии. Инновации (ФТИ-2019). Е.: ООО “Издательство учебно-методический центр УПИ”, 2019. C. 519. http://elar.urfu.ru/handle/10995/98459
- Малютина Т.М., Конькова О.В. Аналитический контроль в металлургии цветных и редких металлов. М.: Металлургия, 1988. 240 с.
- Langmuir I. // J. Am. Chem. Soc. 1918. V. 40. № 9. P. 1361. https://doi.org/10.1021/ja02242a004
- Ho Y.S. // J. Hazard. Mater. 2006. V. 136. P. 681. https://doi.org/10.1016/j.jhazmat.2005.12.043
- Хамизов Р.Х., Свешникова Д.А., Кучерова А.Е., Синяева Л.А. // Журн. физ. химии. 2018. Т. 92. № 9. С. 1451. https://doi.org/10.1134/S0044453718090121
- Хамизов Р.Х. // Журн. физ. химии. 2020. Т. 94. № 1. С. 125. https://doi.org/10.31857/S0044453720010148
- Hai Nguyen Tran, Sheng-Jie You // Water Res. 2017. V. 120. P. 88. https://doi.org/10.1016/j.watres.2017.04.014
Supplementary files
