Synthesis and properties of LiNiO2 close to stoichiometric composition obtained by combined synthesis method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study presents the synthesis and characterisation of lithium nickelate LiNiO₂ with near-stoichiometric composition prepared by a combined method. LiNiO2 exhibits high electrochemical properties including a theoretical capacity of 250–270 mA/g, making it a promising cathode material for lithium-ion batteries as an alternative to LiCoO2. However, the commercial use of LiNiO₂ is limited by the difficulty in achieving stoichiometric composition and the high cost of conventional synthesis methods. Using X-ray phase analysis and spectrometry, we identified the phases formed and determined their chemical composition. Electron microscopy and Brunauer-Emmett-Teller (BET) techniques were used to investigate the structure and morphology. The developed process scheme led to the preparation of lithium nickelate with the composition Li(0.98)Ni(1.02)O₂, providing the formation of nanoscale samples with high specific surface area and improved electrochemical performance. These results emphasise the potential of LiNiO2 as a competitive cathode material for lithium-ion batteries.

Full Text

Restricted Access

About the authors

R. I. Korneykov

Sakhalin State University; Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Author for correspondence.
Email: v.efremov@ksc.ru

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Yuzhno-Sakhalinsk, 693000; Apatity, 184209

V. V. Efremov

Sakhalin State University; Institute of Industrial Problems of the North Ecology

Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000; Apatity, 184209

S. V. Aksenova

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Email: v.efremov@ksc.ru

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Apatity, 184209

K. A. Kesarev

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Email: v.efremov@ksc.ru

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Apatity, 184209

O. I. Akhmetov

Sakhalin State University

Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000

O. B. Shcherbina

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Email: v.efremov@ksc.ru

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Apatity, 184209

I. R. Elyzarova

Institute of Industrial Problems of the North Ecology

Email: v.efremov@ksc.ru
Russian Federation, Apatity, 184209

I. G. Tananaev

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Email: v.efremov@ksc.ru

Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials

Russian Federation, Apatity, 184209

O. O. Shichalin

Sakhalin State University

Email: v.efremov@ksc.ru
Russian Federation, Yuzhno-Sakhalinsk, 693000

References

  1. Collins D.H. // J. Power Sources. 1994. V. 52. № 2. P. 313. https://doi.org/10.1016/0378-7753(94)87026-8
  2. Ohzuku T., Ueda A., Nagayama M. // J. Electrochem. Soc. 1993. V. 140. № 7. P. 1862. https://doi.org/10.1149/1.2220730
  3. Kalaiselvi N., Periasamy P., Thirunakaran R. et al. // Ionics (Kiel). 2001. V. 7. № 4–6. P. 451. https://doi.org/10.1007/BF02373583
  4. Minakshi M., Sharma N., Ralph D. et al. // Electrochem. Solid-State Lett. 2011. V. 14. № 6. P. A86. https://doi.org/10.1149/1.3561764
  5. Divakaran A.M., Minakshi M., Bahri P.A. et al. // Prog. Solid State Chem. 2021. V. 62. P. 100298. https://doi.org/10.1016/j.progsolidstchem.2020.100298
  6. Wang R.-C., Lin Y.-C., Wu S.-H. // Hydrometallurgy. 2009. V. 99. № 3–4. P. 194. https://doi.org/10.1016/j.hydromet.2009.08.005
  7. Monajjemi M., Mollaamin F., Thu P.T. et al. // Russ. J. Electrochem. 2020. V. 56. № 8. P. 669. https://doi.org/10.1134/S1023193520030076
  8. Sivajee Ganesh K., Purusottam Reddy B., Jeevan Kumar P. et al. // J. Electroanal. Chem. 2018. V. 828. P. 71. https://doi.org/10.1016/j.jelechem.2018.09.032
  9. Kalyani P. // J. Power Sources. 2002. V. 111. № 2. P. 232. https://doi.org/10.1016/S0378-7753(02)00307-5
  10. Ramesh Babu B., Periasamy P., Thirunakaran R. et al. // Int. J. Inorg. Mater. 2001. V. 3. № 4–5. P. 401. https://doi.org/10.1016/S1466-6049(01)00023-X
  11. Thirunakaran R., Kalaiselvi N., Periasamy P. et al. // Ionics (Kiel). 2001. V. 7. № 3. P. 187. https://doi.org/10.1007/BF02419227
  12. Bianchini M., Roca‐Ayats M., Hartmann P. et al. // Angew. Chem. Int. Ed. 2019. V. 58. № 31. P. 10434. https://doi.org/10.1002/anie.201812472
  13. Hata M., Tanaka T., Kato D. et al. // Electrochem. 2021. V. 89. № 3. P. 223. https://doi.org/10.5796/electrochemistry.20-65151
  14. Tolganbek N., Yerkinbekova Y., Kalybekkyzy S. et al. // J. Alloys Compd. 2021. V. 882. P. 160774. https://doi.org/10.1016/j.jallcom.2021.160774
  15. Shembelʹ E.M., Apostolova R.D., Aurbach D. et al. // Russ. J. App. Chem. 2014. V. 87. № 9. P. 1260. https://doi.org/10.1134/S1070427214090122
  16. Wang L., Chen B., Ma J. et al. // Chem. Soc. Rev. 2018. V. 47. № 17. P. 6505. https://doi.org/10.1039/C8CS00322J
  17. Divakaran A.M., Minakshi M., Bahri P.A. et al. // Prog. Solid State Chem. 2021. V. 62. P. 100298. https://doi.org/10.1016/j.progsolidstchem.2020.100298
  18. Kalyani P., Kalaiselvi N. // Sci. Technol. Adv. Mater. 2005. V. 6. № 6. P. 689. https://doi.org/10.1016/j.stam.2005.06.001
  19. Kalyani P., Kalaiselvi N., Renganathan N.G. // J. Power Sources. 2003. V. 123. № 1. P. 53. https://doi.org/10.1016/S0378-7753(03)00458-0
  20. Kalyani P., Kalaiselvi N., Renganathan N.G. et al. // Mater. Res. Bull. 2004. V. 39. № 1. P. 41. https://doi.org/10.1016/j.materresbull.2003.09.021
  21. Mesnier A., Manthiram A. // ACS Appl. Mater. Interfaces. 2020. V. 12. № 47. P. 52826. https://doi.org/10.1021/acsami.0c16648
  22. Välikangas J., Laine P., Hietaniemi M. et al. // Appl. Sci. 2020. V. 10. № 24. P. 8988. https://doi.org/10.3390/app10248988
  23. Bianchini M., Fauth F., Hartmann P. et al. // J. Mater. Chem. A. Mater. 2020. V. 8. № 4. P. 1808. https://doi.org/10.1039/C9TA12073D
  24. Pesterfield L. // J. Chem. Educ. 2009. V. 86. № 10. P. 1182. https://doi.org/10.1021/ed086p1182
  25. Tretyakov Yu.D., Martynenko L.I., Grigoriev A.N., Tsivadze A.Yu. // Inorg. Сhem. 2001. V. 1. Р. 378.
  26. Makhonina E.V., Pervov V.S., Dubasova V.S. // Russ. Chem. Rev. 2004. V. 73. № 10. P. 991. https://doi.org/10.1070/RC2004v073n10ABEH000896
  27. Рабинович В.А., Хавик Э.Я. Краткий химический справочник. Л.: Химия, 1978. 334 с.
  28. Riewald F., Kurzhals P., Bianchini M. et al. // J. Electrochem. Soc. 2022. V. 169. № 2. P. 020529. https://doi.org/10.1149/1945-7111/ac4bf3
  29. Taha T.A., El-Molla M.M. // J. Mater. Res.Technol. 2020. V. 9. № 4. P. 7955. https://doi.org/10.1016/j.jmrt.2020.04.098
  30. Yan F.Y., Zhang H., Lai Q. // J. Sichuan University. 2002. V. 39. P. 918.
  31. Ohzuku T., Ueda A., Nagayama M. et al. // Electrochim. Acta. 1993. V. 38. № 9. P. 1159. https://doi.org/10.1016/0013-4686(93)80046-3
  32. Taha T.A., Elrabaie S., Attia M.T. // J. Mater. Sci.: Mater. Electron 2018. V. 29. № 21. P. 18493. https://doi.org/10.1007/s10854-018-9965-4
  33. Levi M.D., Aurbach D. // J. Phys. Chem. B. 2004. V. 108. № 31. P. 11693. https://doi.org/10.1021/jp0486402
  34. Umeda M., Dokko K., Fujita Y. et al. // Electrochim. Acta. 2001. V. 47. № 6. P. 885. https://doi.org/10.1016/S0013-4686(01)00799-X
  35. Wang C., Appleby A.J., Little F.E. // Electrochim. Acta. 2001. V. 46. № 12. P. 1793. https://doi.org/10.1016/S0013-4686(00)00782-9
  36. Ivanishchev A.V., Gridina N.A., Rybakov K.S. et al. // J. Electroanal. Chem. 2020. V. 860. P. 113894. https://doi.org/10.1016/j.jelechem.2020.113894
  37. Чуриков А.В., Иванищев А.В., Запсис К.В. и др. // Электрохим. энергетика. 2007. T. 7. № 4. С. 169.
  38. Amin R., Ravnsbæk D.B., Chiang Y.-M. // J. Electrochem. Soc. 2015. V. 162. № 7. P. A1163. https://doi.org/10.1149/2.0171507jes

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of samples: a – Li0.25Ni1.75O2, b – Li0.35Ni1.65O2, c – Li0.64Ni1.36O2, d – Li0.98Ni1.02O2, d – Li0.524Ni1.476O2, e – Li0.79Ni1.21O2, g – Li0.92Ni1.08O2, h – Li0.55Ni1.45O2, i – Li0.68Ni1.32O2, k – Li0.75Ni1.25O2.

Download (363KB)
3. Fig. 2. IR spectrum of the sample with the composition Li0.98Ni1.02O2.

Download (59KB)
4. Fig. 3. Schematic flow chart for obtaining lithium nickelate

Download (251KB)
5. Fig. 4. SEM images of samples, Li0.79Ni1.21O2 (a) and Li0.98Ni1.02O2 (b).

Download (1011KB)
6. Fig. 5. Complex impedance diagram of Li0.79Ni1.21O2.

Download (56KB)
7. Fig. 6. Complex impedance diagram of Li0.98Ni1.02O2.

Download (61KB)
8. Fig. 7. Equivalent equivalent circuit.

Download (44KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».