Phase Equilibria in the Li–V–O System (Analytical Review)
- Authors: Nipan G.D.1, Buzanov G.A.1
-
Affiliations:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 69, No 10 (2024)
- Pages: 1432-1442
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://journals.rcsi.science/0044-457X/article/view/281874
- DOI: https://doi.org/10.31857/S0044457X24100094
- EDN: https://elibrary.ru/JIERBL
- ID: 281874
Cite item
Abstract
Using the method of topological modeling and basing on fragmentary experimental data on phase equilibria and transformations, P–T–x phase diagrams of binary systems Li–V, Li–O, V–O, as well as a complete isothermal concentration diagram of the Li–V–O system, which take into account the formation of limited solid solutions and the presence of saturated vapor, were constructed for the first time.
Full Text

About the authors
G. D. Nipan
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Author for correspondence.
Email: nipan@igic.ras.ru
Russian Federation, Moscow, 119071
G. A. Buzanov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: nipan@igic.ras.ru
Russian Federation, Moscow, 119071
References
- Fallahi A., Guldentops G., Tao M. et al. // Appl. Therm. Eng. 2017. V. 127. P. 1427. https://doi.org/10.1016/j.applthermaleng.2017.08.161
- Zare M., Mikkonen K.S. // Adv. Funct. Mater. 2023. V. 33. № 12. P. 2213455. https://doi.org/10.1002/adfm.202213455
- Kato K., Lee J., Fujita A. et al. // J. Alloys Compd. 2018. V. 751. P. 241. https://doi.org/10.1016/j.jallcom.2018.04.094
- Li X., Liu Y., Xu Y. et al. // Acc. Mater. Res. 2023. V. 4 № 6. P. 484. https://doi.org/10.1021/accountsmr.2c00251
- Huang L., Yang Y., Yuan D., Cai X. // J. Energ. Stor. 2021. V. 36. P. 102343. https://doi.org/10.1016/j.est.2021.10234316
- Kinemuchi Y., Masuda Y., Ozaki K., Fujita A. // J. Alloys Compd. 2021. V. 882. P. 160741. https://doi.org/10.1016/j.jallcom.2021.160741
- Kondo S., Johnston D.C., Swenson C.A. et al. // Phys. Rev. Lett. 1997. V. 78. № 19. P. 3729. https://doi.org/10.1103/PhysRevLett.78.3729
- Schweizer T.F., Niemann U., Que X. et al. // APL Mater. 2023. V. 11. P. 021109. https://doi.org/10.1063/5.0140576
- Shimizu Y., Takeda H., Tanaka M. et al. // Nat. Commun. 2012. V. 3. № 1. P. 981. https://doi.org/10.1038/ncomms1979
- Li G., Sakuma K., Ikuta H. et al. // Denki Kagaku. 1996. V. 64. № 3. P. 202.
- Lu Y., Zheng X., Wang J. et al. // Adv. Mater. Inter. 2019. V. 6. P. 1901368. https://doi.org /10.1002/admi.201901368
- Christensen C.K., Sørensen D.R., Yvam J., Ransbǽk D.B. // Chem. Mater. 2019. V. 31. № 2. P. 512. https://doi.org/10.1021/acs.chemmater.8b04558
- Divya M.L., Aravindan V. // Chem. Asian J. 2019. V. 14. № 24. P. 4665. https://doi.org/10.1002/asia.20190094617
- Sarkar S., Bhownik A., Bharadwaj M.D., Mitra S. // J. Electrochem. Soc. 2014. V. 161. № 1. P. A14. https://doi.org/10.1149/2.006401jes
- Jouanneau S., Verbaere A., Guyomard D. // J. Solid State Chem. 2005. V. 178. P. 22. https://doi.org/110.1016/j.jssc.2004.10.009
- Smith J.F., Lee K.J. // Bull. Alloy Phase Diagrams. 1988. V. 9. № 4. P. 474. https://doi.org/10.1007/BF02881870
- Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М., 2015. 480 с.
- Zhang Y., Evans J.R.G., Yang S. // J. Chem. Eng. Data. 2011. V. 56. № 2. P. 328. https://doi.org/10.1021/je1011086
- Alcock C.B., Itkin V.P., Horrigan M.K. // Can. Metall. Q. 1984. V. 23. № 3. P. 309. https://doi.org/10.1179/cmq.1984.23.3.309
- Kondo M., Nakajima Y. // Fusion Eng. Des. 2013. V. 88. № 9–10. P. 2556. https://doi.org/10.1016/j.fusengdes.2013.05.049
- Mondal B., Mukherjee T., Finch N.W. et al. // Materials. 2023. V. 16. № 1. P. 50. https://doi.org/10.3390/ma16010050
- Тонков Е.Ю. Фазовые диаграммы элементов при высоком давлении. М.: Наука, 1979. 192 с.
- Arblaster J.W. // J. Phase Equilib. Diffus. 2017. V. 38. № 1. P. 51. https://doi.org/10.1007/s11669-016-0514-718
- Chang K., Hallstedt B. // CALPHAD. 2011. V. 35. № 2. P. 160. https://doi.org/10.1016/j.calphad.2011.02.003
- Зломанов В.П., Новоселова А.В. P–T–x-диаграммы состояния систем металл–халькоген. М.: Наука, 1987. 208 с.
- Сычев В.В., Вассерман А.А., Козлов А.Д. и др. Термодинамические свойства кислорода: ГСССР. М.: Изд-во стандартов, 1981. 304 с.
- Wriedt H.A. // Bull. Alloy Phase Diagrams. 1989. V. 10. № 3. P. 271. https://doi.org/10.1007/BF02877512
- Massalski T.B., Okamoto H., Subramanian P.R., Kacprzak L. // Binary Alloy Phase Diagrams. ASM International. Materials Park. OH. 1990.
- Kang Y.B. // J. Eur. Ceram. Soc. 2012. V. 32. № 12. P. 3187. https://doi.org/10.101016/j.jeurceramsoc.2012.04.045
- Okamoto H. // J. Phase Equilib. Diffus. 2020. V. 41. № 5. P. 722. https://doi.org/10.1007/s11669-020-00839-9
- Yang Y., Mao H., Selleby M. // CALPHAD. 2015. V. 51. P. 144. https://doi.org/10.1016/j.calphad.2015.08.003
- Cao Z., Li S., Xie W. et al. // CALPHAD. 2015. V. 51. P. 241. https://doi.org/10.1016/j.calphad.2015.10.003
- Banchorndhevakul W., Matsui T., Naito K. // J. Nucl. Sci. Tech. 1986. V. 23. № 10. P. 873. https://doi.org/10.1080/18811248.1986.973507119
- Banchorndhevakul W., Matsui T., Naito K. // J. Nucl. Sci. Technol. 1986. V. 23. № 7. P. 602. https://doi.org/10.1080/18811248.1986.9735028
- Banchorndhevakul W., Matsui T., Naito K. // Thermochim. Acta. 1985. V. 88. № 1. P. 301. https://doi.org/10.1016/0040-6031(85)85446-0
- Фотиев А.А., Волков В.Л., Капусткин В.К. Оксидные ванадиевые бронзы. М.: Наука, 1978. 176 с.
- Takayama-Muromachi E., Kato K. // J. Solid State Chem. 1987. V. 71. № 1. P. 274. https://doi.org/10.1016/0022-4596(87)90167-8
- Deublein G., Huggins R.A. // J. Electrochem. Soc. 1989. V. 136. № 8. P. 2234. https://doi.org/10.1149/1.2097275
- Ito Y., Maruyama T., Yoshimura M., Saito Y. // J. Mater. Sci. Lett. 1989. V. 8. № 4. P. 456. https://doi.org/10.1007/BF00720705
- Das S., Ma X., Zong X. et al. // Phys. Rev. B. 2006. V. 74. P. 184417. https://doi.org/10.1103/PhysRevB.74.184417
- Sun Y., Li C., Yang C. et al. // Adv. Sci. 2022. V. 9. № 3. P. 2103493. https://doi.org/10.1002/advs.20210349320
- Tian W., Chisholm M.F., Khalifan P.G. et al. // Mater. Res. Bull. 2004. V. 39. № 9. P. 1319. https://doi.org/10.1016/j.materresbull.2004.03.024
- Jadidi Z., Yang J.H., Chen T. et al. // J. Mater. Chem. 2023. V. 11. № 33. P. 17728. https://doi.org/10.1039/D3TA02475J
- Meng L., Guo R., Li F. et al. // J. Mater. Sci. 2020. V. 55. № 13. P. 5522. https://doi.org/10.1007/s10853-020-04388-x
- Reisman A., Mineo J. // J. Phys. Chem. 1962. V. 66. № 6. P. 1181. https://doi.org/10.1021/j100812a048
- Das S., Zong X., Niazi A. et al. // Phys. Rev. B. 2007. V. 76. P. 054418. https://doi.org/10.1103/PhysRevB.76.054418
- Фотиев А.А., Глазырин М.И., Баусова Н.В. // Журн. неорган. химии. 1968. Т. 13. № 7. С. 1936.
- Волков В.Л., Сурат Л.Л., Фотиев А.А. // Химия и технология ванадиевых соединений. Пермь, 1974. С. 273.
- Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. P. 551. https://doi.org/10.1134/S0036023617050059
- Райнз Ф. Диаграммы фазового равновесия в металлургии. М.: Металлургия, 1960. 376 с.
Supplementary files
