Synthesis and study thermodynamic properties of germanates CaYb2Ge4O12 and CaLu2Ge4O12 the range 320–1000 K
- 作者: Denisova L.T.1, Belokopytova D.V.1, Kargin Y.F.2, Vasil’ev G.V.1, Belousova N.V.1, Denisov V.M.1
-
隶属关系:
- Siberian Federal University
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
- 期: 卷 69, 编号 9 (2024)
- 页面: 1277-1283
- 栏目: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/280393
- DOI: https://doi.org/10.31857/S0044457X24090079
- EDN: https://elibrary.ru/JSUGAX
- ID: 280393
如何引用文章
详细
Solid-phase synthesis of CaYb2Ge4O12 and CaLu2Ge4O12 was carried out from the initial oxides of CaO, Yb2O3 (Lu2O3) and GeO2 by firing in air at temperatures of 1223–1423 K. The crystal structure of the synthesized germanates was determined by X-ray diffraction. The high-temperature heat capacity in the temperature range of 320-1050 K was measured by differential scanning calorimetry. It has been established that the obtained data on heat capacity are well described by the Mayr-Kelly equation:
Cp(CaYb2Ge4O12) = ,
Cp(CaLu2Ge4O12) = .
Based on these results, the main thermodynamic properties of oxide compounds were calculated.
全文:

作者简介
L. Denisova
Siberian Federal University
编辑信件的主要联系方式.
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041
D. Belokopytova
Siberian Federal University
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041
Yu. Kargin
Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Moscow, 119991
G. Vasil’ev
Siberian Federal University
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041
N. Belousova
Siberian Federal University
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041
V. Denisov
Siberian Federal University
Email: ldenisova@sfu-kras.ru
俄罗斯联邦, Krasnoyarsk, 660041
参考
- Денисов В.М., Истомин С.А., Подкопаев О.И. и др. Германий, его соединения и сплавы. Екатеринбург: УрО РАН, 2002. 599 с.
- Piccinelli P., Lausi A., Bettinelli M. // J. Solid State Chem. 2013. V. 205. P. 190. https://doi.org/10.1016/j.jssc.2013.07.021
- Baklanova Y.V., Enyashin A.N., Maksimova L.G. et al. // Ceram. Int. 2018. V. 44. P. 6959. https://doi.org/10.1016/j.ceramint.2018.01.128
- Cui J., Li P., Cao L. et al. // J. Lumin. 2021. V. 237. P. 118170. https://doi.org/10.1016/j.jlumin.2021.11.118170
- He Y., Wei X., Wu Y. et al. // J. Solid State Chem. 2023. V. 322. P. 123980. https://doi.org/10.1016/j.jssc.2023.123980
- Зубков В.Г., Леонидов И.И., Тютюнник А.П. и др. // Физика твердого тела. 2008. Т. 50. № 9. С. 1635.
- Melkozerova M.A., Tarakina N.V., Maksimova L.G. et al. // J. Sol-Gel. Sci. Technol. 2011. V. 59. P. 338. https://doi.org/10.1007/s10971-011-2508-6
- Leonidov I.I., Petrov V.P., Chernyshev V.A. et al. // J. Phys. Chem. 2014. V. 118. P. 8090. https://doi.org/10.1021/jp410492a
- Lipina O.A., Surat L.L., Melkozerova M.A. et al. // J. Solid State Chem. 2013. V. 206. P. 117. https://doi.org/10.1016/j.jssc.2013.08.007
- Tatarina N.V., Zubkov V.G., Leonidov I.I. et al. // Z. Kristallogr. Suppl. 2009. V. 30. P. 401. https://doi.org/10.1524/zksu.2009.0059
- Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Неорган. материалы. 2022. Т. 58. № 4. С. 432. https://doi.org/10.31857/S0002337X22040030
- Галиахметова Н.А., Денисова Л.Т., Васильев Г.В. и др. // Физика твердого тела. 2023. Т. 65. № 10. С. 1821. https://doi.org/10.21883/FTТ. 2023. 56332.102
- Васильев Г.В., Коваленко К.Р., Денисова Л.Т. // Сб. тез. докл. X Всерос. конф. Высокотемпературная химия оксидных систем и материалов. СПб.: ЛЕМА, 2023. С. 154.
- Yamana H., Tanimura R., Yamada T. et al. // J. Solid State Chem. 2006. V. 179. P. 289. https://doi.org/10.1016/j.jssc.2005.10.023
- Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. Userʼs Manual. Karlsruhe: Bruker AXS, 2008.
- Zubkov V.G., Tarakina N.V., Leonidov I.I. et al. // J. Solid State Chem. 2010. V. 183. P. 1186. https://doi.org/10.1016/j.jssc.2010.03.027
- Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. // Неорган. материалы. 2017. Т. 53. № 1. С. 71. https://doi.org/10.7868/S0002337X17010043
- Maier C.G., Kelley K.K. // J.Am. Chem. Soc. 1932. V. 54. № 8. P. 3243. https://doi.org/10.1021/ja01347a029
- Leitner J., Chuchvalec P., Sedmidubský D. et al. // Thermochim. Acta. 2003. V. 395. P. 27.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- Успенская И.А., Иванов А.С., Константинова Н.М., Куценок И.Б. // Журн. физ. химии. 2022. Т. 96. № 9. С. 1302. https://doi.org/10.31857/S0044453722090291
- Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978. 360 с.
- Денисова Л.Т., Каргин Ю.Ф., Белоусова Н.В. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 1007. https://doi.org/10.1134/S0002337X19090021
- Осина Е.Л. // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 223. https://doi.org/10.7868/S0040364417020120
- Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных АСТРА. OWN). Екатеринбург: УрО РАН, 1997. 230 с.
- Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- Кубашевский О., Олкокк С.Б. Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Mostafa A.T.M.G., Eakman J.M., Montoya M.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1996. V. 35. P. 343. https://doi.org/10.1021/ie9501485
- Leitner J., Sedmidubský D., Chuchvalec P. // Ceram. Silik. 2002. V. 46. P. 29.
- Кумок В.Н. Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108.
- Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. P. 597. https://doi.org/10.1016/j.pmatsci.2006.09.002
- Guskov A.V., Gagarin P.G., Guskov N.V. et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
- Mostafa A.T.G.M., Eakman J.M., Yarbro S.L. // Ind. Eng. Chem. Res. 1995. V. 34. P. 4577.
补充文件
