Co-leaching of Li, Fe, Al, and Cu from active materials of LFP batteries

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Co-leaching of the cathode and anode materials of lithium iron phosphate (LFP) batteries was studied. It was determined that the nature of mineral acid (nitric, sulfuric, hydrochloric) affects the degree of leaching of Li, Fe, Al, and Cu. Hydrochloric acid was chosen as the most suitable leaching agent. The effect of the following parameters of the leaching of active materials was investigated: process duration, temperature, hydrochloric acid concentration, and solid : liquid ratio. For complete leaching of copper, hydrogen peroxide was used as an oxidizing agent. The conditions for the most complete extraction of target elements were found to be 25°C, 2 h, 2 M hydrochloric acid solution, 0.05 M H2O2 solution, solid : liquid ratio 1 : 50. The possibility of sufficiently complete leaching of the main elements from spent LFP batteries at room temperature was demonstrated.

About the authors

A. M. Salomatin

Kurnakov Institute of General and Inorganic Chemistry RAS; National Research University Higher School of Economics

Email: yz@igic.ras.ru
Russian Federation, Moscow, 119071; Moscow, 109028

I. V. Zinov’eva

Kurnakov Institute of General and Inorganic Chemistry RAS

Email: yz@igic.ras.ru
Russian Federation, Moscow, 119071

Yu. A. Zakhodyaeva

Kurnakov Institute of General and Inorganic Chemistry RAS

Author for correspondence.
Email: yz@igic.ras.ru
Russian Federation, Moscow, 119071

A. A. Voshkin

Kurnakov Institute of General and Inorganic Chemistry RAS

Email: yz@igic.ras.ru
Russian Federation, Moscow, 119071

References

  1. The United Nations // 2015.
  2. The Global EV Outlook // 2023. https://www.iea.org/reports/global-ev-outlook-2023
  3. Fallah N., Fitzpatrick C. // J. Energy Storage. 2023. V. 68. P. 107740. https://doi.org/10.1016/j.est.2023.107740
  4. Fan T., Liang W., Guo W. et al. // J. Energy Storage. 2023. V. 71. P. 108126. https://doi.org/10.1016/j.est.2023.108126
  5. Hu J., Huang W., Yang L. et al. // Nanoscale. 2020. V. 12. № 28. P. 15036. https://doi.org/10.1039/D0NR03776A
  6. Yao Y., Zhu M., Zhao Z. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. № 11. P. 13611. https://doi.org/10.1021/acssuschemeng.8b03545
  7. Davis K., Demopoulos G.P. // RSC Sustain. 2023. V. 1. № 8. P. 1932. https://doi.org/10.1039/D3SU00142C
  8. Dobó Z., Dinh T., Kulcsár T. // Energy Reports. 2023. V. 9. P. 6362. https://doi.org/10.1016/j.egyr.2023.05.264
  9. Zhou L.-F., Yang D., Du T. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.578044
  10. Vasconcelos D. da S., Tenório J.A.S., Botelho Junior A.B. et al. // Metals (Basel). 2023. V. 13. № 3. P. 543. https://doi.org/10.3390/met13030543
  11. Aaltonen M., Peng C., Wilson B.P. et al. // Recycling. 2017. V. 2. № 4. P. 20. https://doi.org/10.3390/recycling2040020
  12. Song D., Wang T., Liu Z. et al. // J. Environ. Chem. Eng. 2022. V. 10. № 1. P. 107102. https://doi.org/10.1016/j.jece.2021.107102
  13. Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
  14. Кожевникова А.В., Уварова Е.С., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2023. Т. 57. № 5. С. 553. https://doi.org/10.31857/S0040357123050111
  15. Nicol M.J. // Hydrometallurgy. 2020. V. 193. P. 105328. https://doi.org/10.1016/j.hydromet.2020.105328
  16. Huang Z., Chen T., Zhou Y. et al. // Processes. 2020. V. 8. № 12. P. 1534. https://doi.org/10.3390/pr8121534
  17. Li H., Xing S., Liu Y. et al. // ACS Sustain. Chem. Eng. 2017. V. 5. № 9. P. 8017. https://doi.org/10.1021/acssuschemeng.7b01594
  18. Liu W., Li K., Wang W. et al. // Can. J. Chem. Eng. 2023. V. 101. № 4. P. 1831. https://doi.org/10.1002/cjce.24617
  19. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Metals (Basel). 2021. V. 11. № 12. P. 1964. https://doi.org/10.3390/met11121964
  20. Зиновьева И.В., Федоров А.Я., Милевский Н.А. и др. // Теорет. основы хим. технологии. 2021. Т. 55. № 4. С. 480. https://doi.org/10.31857/S0040357121040199
  21. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A. et al. // Processes. 2022. V. 10. № 12. P. 2671. https://doi.org/10.3390/pr10122671
  22. Dong L., Li Y., Shi P. et al. // J. Power Sources. 2023. V. 582. P. 233564. https://doi.org/10.1016/j.jpowsour.2023.233564
  23. Binnemans K., Jones P.T. // J. Sustain. Metall. 2023. V. 9. № 2. P. 423. https://doi.org/10.1007/s40831-023-00681-6
  24. Kadachi A.N., Al-Eshaikh M.A. // X-Ray Spectrometry. 2012. V. 41. № 5. P. 350. https://doi.org/10.1002/xrs.2412
  25. Iwai M., Majima H., Awakura Y. // Hydrometallurgy. 1988. V. 20. № 1. P. 87. https://doi.org/10.1016/0304-386X(88)90028-X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».