GeTe–Bi2Te3–Te System
- Authors: Orujlu E.N.1, Alakbarova T.M.2, Babanly M.B.2,3,4
-
Affiliations:
- Azerbaijan State Oil and Industry University
- Baku State University
- Institute of Catalysis and Inorganic Chemistry
- Azerbaijan State University of Economics
- Issue: Vol 69, No 8 (2024)
- Pages: 1144-1154
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://journals.rcsi.science/0044-457X/article/view/274333
- DOI: https://doi.org/10.31857/S0044457X24080079
- EDN: https://elibrary.ru/XKKGKS
- ID: 274333
Cite item
Abstract
Alloys of the GeTe–Bi2Te3–Te system, synthesized using a special technique that makes it possible to obtain them in a state as close as possible to equilibrium, have been studied using the methods of differential thermal and X-Ray diffraction analysis, as well as scanning electron microscopy. A solid-phase equilibria diagram, a projection of the liquidus surface, some polythermal sections and an isothermal section at 300 K of the phase diagram were constructed. The fields of primary crystallization of phases, types and coordinates of non— and monovariant equilibria are determined. It has been established that monovariant equilibria on curves emanating from the peritectic and eutectic points of the GeTe–Bi2Te3 boundary system undergo transformations at certain transition points. Near the tellurium corner of the concentration triangle, a cascade of invariant transition reactions has been identified, characterizing the joint crystallization of two-phase mixtures of telluride phases and elemental tellurium.
Full Text

About the authors
E. N. Orujlu
Azerbaijan State Oil and Industry University
Author for correspondence.
Email: babanlymb@gmail.com
Azerbaijan, Baku
T. M. Alakbarova
Baku State University
Email: babanlymb@gmail.com
Azerbaijan, Baku
M. B. Babanly
Baku State University; Institute of Catalysis and Inorganic Chemistry; Azerbaijan State University of Economics
Email: babanlymb@gmail.com
Azerbaijan, Baku; Baku; Baku
References
- Абрикосов Н.Х., Банкина В.Ф., Порецкая Л.В. и др. Полупроводниковые халькогениды и сплавы на их основе. М.: Наука, 1968. 616 с.
- Шевельков А.В. // Успехи химии. 2008. T. 77. № 1. С. 3. https://doi.org/10.1070/RC2008v077n01ABEH003746
- Шелимова Л.Е., Карпинский О.Г., Кретова и др. // Неорган. материалы. 1993. Т. 29. № 1. С. 54.
- Sootsman J.R., Chung D.Y., Kanatzidis M.G. // Angew. Chem. Int. Ed. 2009. V. 48. P. 8616. https://doi.org/10.1002/anie.200900598
- Kuznetsov V.L., Kuznetsova L.A., Rowe D.M. // J. Phys. D: Appl. Phys. 2001. V. 34. P. 700. https://doi.org/10.1088/0022-3727/34/5/306
- Ma W., Record M.-C., Tian J. et al. // Materials. 2021. V. 4. P. 4086. https://doi.org/10.3390/ma14154086
- Xu B., Feng T., Li Z. et al. // Angew. Chem. Int. Ed. 2018. V. 57. P. 10938. https://doi.org/10.1002/anie.201805890
- Yang X., Su X., Yan Y. et al. // J. Inorg. Mater. 2021. V. 36. P. 75. http://dx.doi.org/10.15541/jim20200252
- Kihoi S.K., Shenoy U.S., Kahiu J.N. // ACS Appl. Electron. Mater. 2023. V. 5. № 8. P. 4504. https://doi.org/10.1021/acsaelm.3c00685
- Kane C.L., Moore J.E. // Physics World. 2011. V. 24. P. 32.
- Moore J.E. // Nature. 2010. V. 464. P. 194. https://doi.org/10.1038/nature08916
- Heremans J.P., Cava R.J., Samarth N. // Nat. Rev. Mater. 2017. V. 2. P. 17049. https://doi.org/10.1038/natrevmats.2017.49
- Politano A., Caputo M., Nappini S. et al. // J. Phys. Chem. C. 2014. V. 118. P. 21517. https://doi.org/10.1021/jp506444f
- Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // Phys. Rev. B: Condens. Matter. 2017. V. 96. P. 235124. https://doi.org/10.1103/PhysRevB.96.235124
- Hattori Y., Tokumoto Y., Edagawa K. // Phys. ReV. Mater. 2017. V. 1. P. 074201. https://doi.org/10.1103/PhysRevMaterials.1.074201
- Pacile D., Eremeev S.V., Caputo M. et al. // Phys. Status Solidi: Rapid Res. Lett. 2018. P. 1800341. https://doi.org/10.1002/pssr.201800341
- Shvets I.A., Klimovskikh I.I., Aliev Z.S. et al. // Phys. ReV. B: Condens. Matter. 2019. V. 100. № 19. P. 195127. https://doi.org/10.1103/PhysRevB.100.195127
- Jahangirli Z.A., Alizade E.H., Aliev Z.S. et al. // J. Vacuum Sci. Technol. B. 2019. V. 37. P. 062910. https://doi.org/10.1116/1.5122702
- Wu Z., Liang G., Pang W.K. et al. // AdV. Mater. 2019. V. 32. № 2. P. 1905632. https://doi.org/10.1002/adma.201905632
- Klimovskikh I.I., Otrokov M.M., Estyunin D. et al. // npj Quantum Mater. 2020. V. 5. P. 54. https://doi.org/10.1038/s41535-020-00255-9
- Hattori Y., Tokumoto Y., Kimoto K. et al. // Sci ReP. 2020. V. 10. P. 7957. https://doi.org/10.1038/s41598-020-64742-6
- Tominaga J. // MRS Bulletin. 2018. V. 43. P. 347. http://dx.doi.org/10.1557/mrs.2018.94
- Jones R.O // Phys. ReV. B: Condens. Matter. 2020. V. 101. P. 024103. http://dx.doi.org/10.1103/PhysRevB.101.024103
- Cao T., Wang P., Simpson R.E. et al. // Prog. Quant. Electron. 2020. V. 74. P. 100299. https://doi.org/10.1016/j.pquantelec.2020.100299
- Wang D., Zhao L., Yu S. et al. // Mater. Today. 2023. V. 68. P. 334. https://doi.org/10.1016/j.mattod.2023.08.001
- Sun C.W., Youm M.S., Kim Y.T.. // J. Phys.: Condens. Matter. 2007. V. 19. P. 446004. https://doi.org/10.1088/0953-8984/19/44/446004
- Cui Y., Zhang Y., Cheng Zh. // AdV. Opt. Mater. 2023. V. 11. P. 2300481. https://doi.org/10.1002/adom.202300481
- Gavdush A.A., Komandin G.A., Bukin V.V. et al. // J. Appl. Phys. 2023. V. 134. P. 085103. https://doi.org/10.1063/5.0160772
- West D.R.F. Ternary Phase Diagrams in Materials Science. Boca Raton: CRC Press, 2019. 236 p.
- Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
- Babanly M.B., Yusibov Yu.A., Imamaliyeva S.Z. et al. // J. Phase Equilib. Diff. 2024. https://doi.org/10.1007/s11669-024-01088-w
- Abrikosov N.X., Danilova-Dobryakova G.T. // IzV. Akad. Nauk SSSR. Neorg. Mater. 1965. № 1. P. 57.
- Abrikosov N.Kh., Danilova-Dobryakova G.T. // IzV. Akad. Nauk SSSR. Neorg. Mater. 1970. V. 6. № 10. P. 1798.
- Рогачева У.И., Лаптев С.А., Дудкин Л.Д. и др. // Изв. АН СССР. Неорган. материалы. 1986. T. 22. № 11. C.1827.
- Skoropanov A.S., Valevsky B.L., Skums V.F. et al. // Thermоchim. Acta. 1985. V. 90. P. 331. https://doi.org/10.1016/0040-6031(85)87110-0
- Shelimova L.E., Karpinsky O.G., Kretova M.A., Avilov E.S. // J. Alloys Compd. 1996. V. 243. № 1–2. P. 194. https://doi.org/10.1016/S0925-8388(96)02394-8
- Kosyakov V.I., Shestakov V.A., Shelimova L.E. et al. // Inorg. Mater. 2000. V. 36. № 3. P. 201. https://doi.org/10.1007/BF02757921
- Шелимова Л.Е., Томашик В.Н., Грыцив В.И. Диаграммы состояния в полупроводниковом материаловедении: системы на основе Si, Ge, Sn, Pb. М.: Наука, 1991. 368 с.
- Shelimova L.E., Karpinskii O.G., Kosyakov V.I. // J. Struct. Chem. 2000. V. 41. № 1. P. 81. https://doi.org/10.1007/BF02684732
- Shelimova L.E., Karpinskii O.G., Zemskov V.S. // Inorg. Mater. 2000. V. 36. № 3. P. 235. https://doi.org/10.1007/BF02757928
- Шелимова Л.Е., Карпинский О.Г., Константинов П.П. и др. // Неорган. материалы. 2004. T. 40. № 5. P. 530.
- Seidzade A.E., Orujlu E.N., Doert T., Babanly M.B. // J. Phase Equilib. Diff. 2021. V. 42. P. 373. https://doi.org/10.1007/s11669-021-00888-8
- Gojayeva I.M., Babanly V.I., Aghazade A.I., Orujlu E.N. // Azerbaijan Chem. J. 2022. № 2. P. 47. https://doi.org/10.32737/0005-2531-2022-2-47-53
- Orujlu E.N., Seidzade A.E., Babanly D.M. // J. Solid. State Chem. 2024. V. 330. P. 124494. https://doi.org/10.1016/j.jssc.2023.124494
- Alakbarova T.M., Meyer H.-J., Orujlu E.N. et al. // Phase Transit. 2021. V. 94. № 5. P. 366. https://doi.org/10.1080/01411594.2021.1937625
- Alakbarova T.M., Meyer H.-J., Orujlu E.N. et al. // Condens. Matter Interphases. 2022. V. 24. № 1. P. 11. https://doi.org/10.17308/kcmf.2022.24/9050
- Alakbarova T.M., Orujlu E.N., Babanly D.M. et al. // Phys. Chem. Solid State. 2022. V. 23. № 1. P. 25. https://doi.org/10.15330/pcss.23.1.25-33
- Orujlu E.N., Babanly D.M., Alakbarova T.M. et al. // J. Chem. Thermodyn. 2024 (accepted).
- Hasanova G.S., Aghazade A.I., Imamaliyeva S.Z. et al. // JOM. 2021. V. 73. P.1511. https://doi.org/10.1007/s11837-021-04621-1
- Hasanova G.S., Aghazade A.I., Babanly D.M. et al. // J. Therm. Anal. Calorim. 2021. https://doi.org/10.1007/s10973-021-10975-0
- Bletskan D.I. // J. Ovonic Research. 2005. V. 1. № 5. P. 53.
- Binary Alloy Phase Diagrams / Ed. Massalski T.B. Ohio: ASM International. Materials Park, 1990. V. 3. 3589 p.
- Lutsyk V.I., Vorob’eva V.P., Shodorova S.Ya. // Russ. J. Phys. Chem. 2015. V. 89. P. 2331. https://doi.org/10.1134/S0036024415130245
- Lutsyk V.I., Vorob’eva V.P. // Russ. J. Phys. Chem. A. 2017. V. 91. P. 2593. https://doi.org/10.1134/S003602441713013
Supplementary files
