Synthesis and thermal transformations of tungstenphosphatemetallate complexes with hexamethylenetetramine
- Authors: Lozinskii N.S.1, Lopanov A.N.2, Moroz Y.A.1, Pekhtereva T.M.1
-
Affiliations:
- Litvinenko Institute of Physical Organic and Coal Chemistry
- Shukhov Belgorod State Technological University
- Issue: Vol 69, No 7 (2024)
- Pages: 1029-1038
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/274311
- DOI: https://doi.org/10.31857/S0044457X24070118
- EDN: https://elibrary.ru/XNKGJZ
- ID: 274311
Cite item
Abstract
The results of the synthesis and identification of complex compounds of hexamethylenetetramine (CH2)6N4 (HMTA) with tungstenphosphatemetallates are presented. The processes and crystalline products of thermal decomposition of compounds with the general formula: Cat5[PW11O39Z(HMTA)] ∙ nH2O, Cat=Na+, NH4+; Z=Co2+, Ni2+, Zn2+; n = 10–13 and the schemes for their thermolysis were established. It has been shown that ammonium salts during thermolysis form phases of the composition ZO ∙ 0.5P2O5 ∙ 11WO3 or Z6/73P6/73W66/73O3 with the structure of phosphotungsten bronze. The decomposition products of sodium salts are a mixture of phases with the structures of sodium tungstates Na2W2O7 and Na2W4O13. The research results can be used to predict thermal transformations and the composition of thermolysis products of similar complexes of HMTA and tungstenphosphatemetallates of other 3d-elements.
Full Text

About the authors
N. S. Lozinskii
Litvinenko Institute of Physical Organic and Coal Chemistry
Email: jaroslavchem@mail.ru
Russian Federation, Donetsk, 283048
A. N. Lopanov
Shukhov Belgorod State Technological University
Email: jaroslavchem@mail.ru
Russian Federation, Belgorod, 308012
Ya. A. Moroz
Litvinenko Institute of Physical Organic and Coal Chemistry
Author for correspondence.
Email: jaroslavchem@mail.ru
Russian Federation, Donetsk, 283048
T. M. Pekhtereva
Litvinenko Institute of Physical Organic and Coal Chemistry
Email: jaroslavchem@mail.ru
Russian Federation, Donetsk, 283048
References
- Roy S., Crans D.C., Parac-Vogt T.N. et al. Polyoxometalates in Catalysis, Biology, Energy and Materials Science. Lausanne: Frontiers Media SA, 2019. 224 p. https://doi.org/10.3389/978-2-88963-233-6
- Cameron J.M., Guillemot G., Galambos Th. et al. // Chem. Soc. Rev. 2022. V. 51. P. 293. https://doi.org/10.1039/d1cs00832c
- Wang W., Chamoreau L.-M., Izzet G. et al. // J.Am. Chem. Soc. 2023. V. 145. № 22. P. 12136. https://doi.org/10.1021/jacs.3c01716
- Iijima J., Naruke H., Suzuki R.X. // ACS Omega. 2023. V. 8. P. 9673. https://doi.org/10.1021/acsomega.3c00711
- Zhao H., Zhao Ch., Liu Zh. et al. // Angew. Chem. Int. Ed. 2023. V. 62. № 32. P. e202303989. https://doi.org/10.1002/anie.202303989
- Savić N.D., Salazar Marcano D.E., Quanten T. et al. // Inorganics 2021. V. 9. P. 22. https://doi.org/10.3390/inorganics9040022
- Wang J., Wang L., Yang Y. et al. // Batteries Supercaps. 2023. V. 6. № 5. P. e202200510. https://doi.org/10.1002/batt.202200510
- Chen Y., Li F., Li Sh. et al. // Inorg. Chem. Commun. 2022. V. 135. P. 109084. https://doi.org/10.1016/j.inoche.2021.109084
- Churipard S.R., Kanakikodi K.S., Choudhuric J.R. et al. // RSC Adv. 2020. V. 10. P. 35988. https://doi.org/10.1039/d0ra07178a
- Zhang Y.M., An Ch.W., Zhang D.F. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 5. P. 679. https://doi.org/10.1134/s0036023621050223
- Lentink S., Marcano D.E.S., Moussawi M.A. et al. // Angew. Chem. Int. Ed. 2023. V. 62. № 31. P. e202303817. https://doi.org/10.1002/anie.202303817
- Kozhevnikov I.V. Catalysis by Polyoxometalates. Chichester: John Wiley, 2002. 202 p.
- Vilanculo C.B., Da Silva M.J., Teixeira M.G. et al. // RSC Adv. 2020. V. 10. P. 7691. https://doi.org/10.1039/d0ra00047g
- Nam W., Yang S., Kim H. // Bull. Korean Chem. Soc. 1997. V. 17. P. 625.
- Da Silva M.J., Da Silva Andrade P.H., Ferreira S.O. et al. // Catal. Lett. 2018. V. 148. P. 2516. https://doi.org/10.1007/s10562-018-2434-0
- Castelo B. Vilanculo, Márcio J. et al. // New J. Chem. 2020. V. 44. P. 2813. https://doi.org/10.1039/C9NJ04725E
- Muñoz M., Greber M., Tayeb K.B. et al. // Green Process. Synt. 2023. V. 12. https://doi.org/10.1515/gps-2023-0026
- Fernandes S., Mirante F., Castro B.D. et al. // Catalysts. 2022. V. 12. P. 581. https://doi.org/10.3390/catal12060581
- Есева Е.А., Акопян А.В., Анисимов А.В. и др. // Нефтехимия. 2020. Т. 60. № 5. С. 586. https://doi.org/10.31857/S0028242120050093
- [Eseva E.A., Akopyan A.V., Anisimov A.V. et al. // Pet. Chem. 2020. V. 60. № 9. P. 979. https://doi.org/10.1134/S0965544120090091]
- Li J., Triana C.A., Wan W. et al. // Chem. Soc. Rev. 2021.V. 50. P. 2444. https://doi.org/10.1039/d0cs00978d
- Allmen K., Moré R., Müller R. et al. // Chem. Plus. Chem. 2015. V. 80. P. 1389. https://doi.org/10.1002/cplu. 201500074
- Abhik Paul, Subhasis Das Adhikary, Sandhya Kapurwana et al. // J. Mater. Chem. A. 2022. V. 10. P. 13152. https://doi.org/10.1039/d2ta02243e
- Gu J., Chen W., Shan G.G. et al. // Mater. Today Energy. 2021. V. 21. P. 100760. https://doi.org/10.1016/j.mtener.2021.100760
- Zhu X.H., Liu J.H., Zhao L.L. et al. // Adv. Mater. Res. 2012. V. 476–478. P. 2005. https://doi.org/10.4028/www.scientific.net/AMR.476-478.2005
- Arens J.T., Blasco-Ahicart M., Azmani K et al. // J. Catalys. 2020. V. 389. P. 345. https://doi.org/10.1016/j.jcat.2020.06.006
- Yingjie H., Chongtai W., Duan Hui D. et al. // Electrochim. Acta. 2011. V. 58. P. 99. https://doi.org/10.1016/j.electacta.2O11.08.099
- Hamidi H., Shams E., Yadollahi B. et al. // Electrochim. Acta. 2009. V. 54. P. 3495. https://doi.org/ 10.1016/j.electacta.2008.12.063
- Cao Y., Chen Q., Shen C. et al. // Molecules. 2019. V. 24. P. 26. https://doi.org/10.3390/molecules24112069
- Zang D., Wang H. // Polyoxometalates. 2022. V. 1. P. 9140006. https://doi.org/10.26599/pom.2022.9140006
- Мороз Я.А., Лозинский Н.С., Заритовский А.Н. и др. // Журн. общ. химии. 2023. Т. 93. № 7. С. 1139. https://doi.org/10.31857/S0044460X23070193
- Veríssimo M.I.S., Evtuguin D.V., Gomes M.T.S.R. // Front. Chem. 2022. V. 10. P. 840657. https://doi.org/10.3389/fchem.2022.840657
- Pope M.T., Müller A. et al. Polyoxometalates: from Platonic Solids to Anti-retroviral Activity. Dordrecht: Kluwer Academic Publishers, 1994. 412 p.
- Prudent R., Moucadel V., Laudet B. et al. // Chem. Biol. 2008. V. 15. № 7. P. 683. https://doi.org/10.1016/j.chembiol.2008.05.018
- Ostroushko A.A., Gagarin I.D., Danilova I.G. et al. // Nanosyst.-Phys. Chem. Math. 2019. V. 10. № 3. P. 318. https://doi.org/10.17586/2220-8054-2019-10-3-318-349
- Ostroushko A.A., Grzhegorzhevskii K.V., Medvedeva S.Yu. et al. // Nanosyst.-Phys. Chem. Math. 2021. V. 12. № 1. P. 81. https://doi.org/10.17586/2220-8054-2021-12-1-81-112
- Bijelic A., Aureliano M., Rompel A. // Angew. Chem. Int. Ed. 2019. V. 58. P. 2980. https://doi.org/0.1002/anie.20180386
- Ostroushko A.A., Gagarin I.D., Grzhegorzhevskii K.V. et al. // J. Mol. Liq. 2020. V. 301. P. 110910. https://doi.org/10.1016/j.molliq.2019.110910
- Grzhegorzhevskii K.V., Shevtsev N.S., Abushaeva A.R. et al. // Russ. Chem. Bull. 2020. V. 69. № 4. P. 804. https://doi.org/10.1007/s11172-020-2836-1
- Ostroushko A.A., Gette I.F., Brilliant S.A. et al. // Nanotechnol. Russ. 2019. V. 14. № 3–4. P. 159. https://doi.org/10.1134/S1995078019020101
- Мороз Я.А., Лозинский Н.С., Лопанов А.Н. и др. // Неорган. материалы. 2021. Т. 57. № 8. С. 878. https://doi.org/ 10.31857/S0002337X21080224 [Moroz Ya.A., Lozinskii N.S., Lopanov A.N. et al. // Inorg. Mater. 2021. V. 57. № 8. P. 835. https://doi.org/ 10.1134/S0020168521080069]
- Мороз Я.А., Лозинский Н.С., Лопанов А.Н. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 185. https://doi.org/ 10.31857/S0044457X22020106
- Семенов С.А., Мусатова В.Ю., Дробот Д.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 1. С. 65. https://doi.org/10.31857/S0044457X20010146
- Пронин А.С., Семенов С А., Дробот Д.В. и др. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1061. https://doi.org/10.31857/S0044457X20080139
- Asif H.M., Bi R.B., Tariq M. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 340. https://doi.org/10.1134/S0036023621030025
- Fesik E.V., Buslaeva T.M., Tarasova L.S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1558. https://doi.org/10.1134/S0036023620100058
- Tan R.X., Wang Q.H., Xiao T.X. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1276. https://doi.org/10.1134/S0036023620080161
- Vilanculo C.B., Da Silva M.J. // New J. Chem. 2020. V. 44. P. 2813. https://doi.org/10.1039/c9nj04725e
- Wu D.-F., Takahashi K., Fujibayashi M. et al. // RSC Adv. 2022. V. 12. P. 21280. https://doi.org/10.1039/d2ra04119g
- Голубев Д.В., Савинкина Е.В., Аль-Хазраджи А.С.Х. и др. // Тонкие химические технологии. 2017. Т. 12. № 2. С. 34.
- Мороз Я.А., Лозинский Н.С., Алемасова Н.В. // Вестн. ДонНУ. Сер. А. Естественные науки. 2023. № 3. С. 54.
- Коренев В.С., Абрамов П.А., Соколов М.Н. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1575. https://doi.org/ 10.31857/S0044457X22100324
- Gholamrezaei S., Salavati-Niasari M., Hadadzadeh H. et al. // High Temp. Mater. Proc. 2016. V. 35. P. 723. https://doi.org/ 10.1515/htmp-2015-0078
- Кокунов Ю.В., Горбунова Ю.Е., Разгоняева Г.А. и др. // Коорд. химия. 2012. Т. 38. № 10. С. 683.
- Saravanakumar M., Chandrasekaran J., Krishnakumar M. et al. // J. Mol. Struct. 2022. V. 1265. P. 133406. https://doi.org/10.1016/j.molstruc.2022.133406
- Barros Á., Artetxe B. Eletxigerra U. et al. // Materials. 2023. V. 16. P. 5054. https://doi.org/10.3390/ma16145054
- Gamelas J.A., Couto F.A., Trovgo M.C. et al. // Thermochim. Acta. 1999. V. 326. P. 165. https://doi.org/10.1016/S0040-6031(98)00597-8
- Дробашева Т.И., Расторопов С.Б. // Инженерный вестник Дона. 2016. № 2. С. 13.
- ivdon.ru/ru/magazine/archive/n2y2016/3576
- Mossotti G., Catania F., Perrucci F. et al. // Chem. Eng. Trans. 2023. V. 99. P. 127. https://doi.org/10.3303/cet2399022.2
Supplementary files
