Di- and Octanuclear Iodoantimonates(III) with 1,2-Dimethylpyridinium and 3-Bromo-1-Ethyllpyridinium: Crystal Structure and Physico-Chemical Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

By the reaction of SbI3 and iodides of the corresponding cations in organic solvents, two new antimony complexes were obtained — (3-Br-1-EtPy)3[Sb2I9] (1), (1,2-MePy)4[Sb8I28] (2). The features of the crystal structure of the compounds were determined by X-ray diffraction. The complexes are thermally stable up to at least 200°C and have a band gap of about 2.2 eV.

Full Text

Restricted Access

About the authors

I. A. Shentseva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk

K. A. Tagiltsev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

A. U. Usoltsev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk

N. A. Korobeynikov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

V. R. Shayapov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk

S. A. Adonin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences; Irkutsk Favorsky Institute of Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: korobeynikov@niic.nsc.ru
Russian Federation, Novosibirsk; Irkutsk

References

  1. Mercier N., Louvain N., Bi W. // CrystEngComm. 2009. V. 11. № 5. P. 720. https://doi.org/10.1039/b817891g
  2. Möbs J., Stuhrmann G., Weigend F. et al. // Chem. A. Eur. J. 2023. V. 29. № 2. P. E202202931. https://doi.org/10.1002/chem.202202931
  3. Heine J., Peerless B., Dehnen S. et al. // Angew. Chem. Int. Ed. 2023. V. 62. № 24. https://doi.org/10.1002/anie.202218771
  4. Dehnhardt N., Böth A., Heine J. // Dalton Trans. 2019. V. 48. № 16. P. 5222. https://doi.org/10.1039/C9DT00575G
  5. Petrochenkova N.V., Storozhuk T.V., Mirochnik A.G. et al. // Russ. J. Coord. Chem. 2002. V. 28. № 7. P. 468. https://doi.org/10.1023/A:1016245126807
  6. Möbs J., Stuhrmann G., Wippermann S. et al. // Chempluschem. 2023. V. 88. № 6. P. E202200403. https://doi.org/10.1002/cplu.202200403
  7. Kojima A., Teshima K., Shirai Y. et al. // J. Am. Chem. Soc. 2009. V. 131. № 17. P. 6050. https://doi.org/10.1021/ja809598r
  8. Marchenko E.I., Fateev S.A., Goodilin E.A. et al. // Crystals. 2022. V. 12. № 5. P. 1. https://doi.org/10.3390/cryst12050657
  9. Fateev S.A., Khrustalev V.N., Simonova A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 997. https://doi.org/10.1134/S0036023622070087
  10. Petrov A.A., Pellet N., Seo J.Y. et al. // Chem. Mater. 2017. V. 29. № 2. P. 587. https://doi.org/10.1021/acs.chemmater.6b03965
  11. Pitaro M., Tekelenburg E.K., Shao S. et al. // Adv. Mater. 2022. V. 34. № 1. https://doi.org/10.1002/adma.202105844
  12. Tutantsev A.S., Udalova N.N., Fateev S.A. et al. // J. Phys. Chem. C. 2020. V. 124. № 20. P. 11117. https://doi.org/10.1021/acs.jpcc.0c03661
  13. Green M.A., Dunlop E.D., Hohl-Ebinger J. et al. // Prog. Photovoltaics Res. Appl. 2022. V. 30. № 7. P. 687. https://doi.org/10.1002/pip.3595
  14. Zhang X., Yu Z., Zhang D. et al. // Adv. Energy Mater. 2023. V. 13. № 33. P. 1. https://doi.org/10.1002/aenm.202201320
  15. Vasiliev A.A., Bykov A.V., Shestimerova T.A. et al. // Russ. Chem. Bull. 2023. V. 72. № 3. P. 641. https://doi.org/10.1007/s11172–023–3828–1
  16. Szklarz P., Jakubas R., Gągor A. et al. // Inorg. Chem. Front. 2020. V. 7. № 8. P. 1780. https://doi.org/10.1039/D0QI00137F
  17. Khan A., Han S., Liu X. et al. // Inorg. Chem. Front. 2018. V. 5. № 12. P. 3028. https://doi.org/10.1039/c8qi00902c
  18. Rowińska M., Piecha-Bisiorek A., Medycki W. et al. // Molecules. 2023. V. 28. № 9. P. 3894. https://doi.org/10.3390/molecules28093894
  19. Oswald I.W.H., Mozur E.M., Moseley I.P. et al. // Inorg. Chem. 2019. V. 58. № 9. P. 5818. https://doi.org/10.1021/acs.inorgchem.9b00170
  20. Liu H., Zhang Z., Zuo W. et al. // Adv. Energy Mater. 2023. V. 13. № 3. https://doi.org/10.1002/aenm.202202209
  21. Wang C., Gu F., Zhao Z. et al. // Adv. Mater. 2020. V. 32. № 31. P. 1907623. https://doi.org/10.1002/adma.201907623
  22. Vargas B., Ramos E., Pérez-Gutiérrez E. et al. // J. Am. Chem. Soc. 2017. V. 139. № 27. P. 9116. https://doi.org/10.1021/jacs.7b04119
  23. Möbs J., Luy J.N., Shlyaykher A. et al. // Dalton Trans. 2021. V. 50. № 43. P. 15855. https://doi.org/10.1039/d1dt02828f
  24. Shentseva I.A., Usoltsev A.N., Abramov P.A. et al. // Mendeleev Commun. 2022. V. 32. № 6. P. 754. https://doi.org/10.1016/j.mencom.2022.11.015
  25. Shentseva I.A., Usoltsev A.N., Korobeynikov N.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 8. P. 7234. https://doi.org/10.3390/ijms24087234
  26. Chai W.-X., Wu L.-M., Li J.-Q. et al. // Inorg. Chem. 2007. V. 46. № 4. P. 1042. https://doi.org/10.1021/ic062091s
  27. Chai W.X., Wu L.M., Li J.Q. et al. // Inorg. Chem. 2007. V. 46. № 21. P. 8698. https://doi.org/10.1021/ic700904d
  28. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  29. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  30. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  31. Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/JP8111556
  32. Soldatova N.S., Suslonov V.V., Kissler T.Y. et al. // Crystals. 2020. V. 10. № 3. P. 230. https://doi.org/10.3390/cryst10030230
  33. Eliseeva A.A., Ivanov D.M., Novikov A.S. et al. // Dalton Trans. 2020. V. 49. № 2. P. 356. https://doi.org/10.1039/c9dt04221k
  34. Semenov A.V., Baykov S.V., Soldatova N.S. et al. // Inorg. Chem. 2023. V. 62. № 15. P. 6128. https://doi.org/10.1021/acs.inorgchem.3c00229
  35. Bartashevich E.V., Sobalev S.A., Matveychuk Y.V. et al. // J. Struct. Chem. 2021. V. 62. № 10. P. 1607. https://doi.org/10.1134/S0022476621100164
  36. Matveychuk Y.V., Ilkaeva M.V., Vershinina E.A. et al. // J. Mol. Struct. 2016. V. 1119. P. 227. https://doi.org/10.1016/j.molstruc.2016.04.072
  37. Zelenkov L.E., Ivanov D.M., Tyumentsev I.A. et al. // Int. J. Mol. Sci. 2022. V. 23. № 19. P. 11870. https://doi.org/10.3390/ijms231911870
  38. Rozhkov A.V., Novikov A.S., Ivanov D.M. et al. // Cryst. Growth Des. 2018. V. 18. № 6. P. 3626. https://doi.org/10.1021/acs.cgd.8b00408
  39. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. № 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484
  40. Pohl S., Saak W., Haase D. // Z. Naturforsch. B. 1987. V. 42. № 12. P. 1493. https://doi.org/10.1515/znb-1987–1201
  41. Pohl S., Lötz R., Haase D. et al. // Z. Naturforsch. B. 1988. V. 43. № 9. P. 1144. https://doi.org/10.1515/znb-1988–0910
  42. Carmalt C.J., Farrugia L.J., Norman N.C. // Z. Anorg. Allg. Chem. 1995. V. 621. № 1. P. 47. https://doi.org/10.1002/zaac.19956210110
  43. Carmalt C.J., Norman N.C., Farrugia L.J. // Polyhedron. 1993. V. 12. № 17. P. 2081. https://doi.org/10.1016/S0277–5387(00)84369–7
  44. Fachbereich Biologie-Chemie, Universität Gh., D.-Kassel W. et al. // Z. Naturforsch. B. 1996. V. 51. № 9. P. 1245. https://doi.org/10.1515/znb-1996–0906
  45. Usol’tsev A.N., Shentseva I.A., Shayapov V.R. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 10. P. 1482. https://doi.org/10.1134/S0036023621100193
  46. Peloquin A.J., McMillen C.D., Pennington W.T. // CrystEngComm. 2022. V. 24. № 35. P. 6251. https://doi.org/10.1039/D2CE00904H
  47. Sharutin V.V., Egorova I.V., Klepikov N.N. et al. // Russ. J. Inorg. Chem. 2009. V. 54. № 11. P. 1768. https://doi.org/10.1134/S0036023609110126
  48. Heine J. // Dalton Trans. 2015. V. 44. № 21. P. 10069. https://doi.org/10.1039/C5DT00813A
  49. Adonin S.A., Sokolov M.N., Fedin V.P. // Coord. Chem. Rev. 2016. V. 312. P. 1. https://doi.org/10.1016/j.ccr.2015.10.010
  50. Kangjing Z., Xioaping L. // Z. Kristallogr. Cryst. Mater. 1990. V. 190. № 1–4. P. 97. https://doi.org/10.1524/zkri.1989.190.14.97
  51. Mukherjee A., Tothadi S., Desiraju G.R. // Acc. Chem. Res. 2014. V. 47. № 8. P. 2514. https://doi.org/10.1021/ar5001555
  52. Stoumpos C.C., Malliakas C.D., Kanatzidis M.G. // Inorg. Chem. 2013. V. 52. № 15. P. 9019. https://doi.org/10.1021/ic401215x
  53. Stoumpos C.C., Mao L., Malliakas C.D. et al. // Inorg. Chem. 2017. V. 56. № 1. P. 56. https://doi.org/10.1021/acs.inorgchem.6b02764
  54. Chen X., Jia M., Xu W. et al. // Adv. Opt. Mater. 2022. V. 51b. P. 1245. https://doi.org/10.1002/adom.202202153
  55. Jin Z., Zhang Z., Xiu J. et al. // J. Mater. Chem. A. 2020. V. 8. № 32. P. 16166. https://doi.org/10.1039/d0ta05433j

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Non-covalent interactions (dotted line) in the crystal structure of compound 1. Hydrogen atoms are not shown

Download (104KB)
3. Fig. 2. Structural type {α-M8I28} (a); anion structure of compound 2 (b). Antimony atoms are numbered

Download (271KB)
4. Fig. 3. Contacts I···I (shown in dotted lines) in the anionic part of complex 2

Download (355KB)
5. Fig. 4. Powder diffractograms of compounds 1 (a) and 2 (b): calculated from X-ray diffraction data (blue) and experimental (red)

Download (173KB)
6. Fig. 5. TG, DTG, and DTA curves for junctions 1 (a) and 2 (b)

Download (126KB)
7. Fig. 6. Diffuse reflection spectra of compounds 1 (a) and 2 (b)

Download (91KB)
8. Supplementary 1
Download (94KB)
9. Supplementary 2
Download (103KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».