Synthesis, structure and magnetic properties of Mn-substituted magnetite for magnetorheological materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Iron(II)-manganese(II) ferrite with the composition Mn0.3Fe2.7O4 was synthesized using the coprecipitation method (with various options for subsequent thermal and mechanical treatment of the precipitate). The material was studied by X-ray phase analysis, infrared spectroscopy, scanning electron microscopy and magnetometry. The powder, which was fired in argon at 740°C (8.0 h) and high-energy grinding (1.0 h) at the final stage of synthesis, is a promising functional filler for magnetorheological materials. An oil suspension based on this powder shows a high shear stress value (3500 Pa at 625 mT). In addition, this powder has a high oil absorption capacity, which ensures sedimentation stability of the suspension.

Full Text

Restricted Access

About the authors

Yu. S. Haiduk

Belarusian State University

Author for correspondence.
Email: j_hajduk@list.ru
Belarus, Minsk, 220030

E. V. Korobko

Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus

Email: j_hajduk@list.ru
Belarus, Minsk, 220072

L. V. Radkevich

Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus

Email: j_hajduk@list.ru
Belarus, Minsk, 220072

R. P. Golodok

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

A. E. Usenko

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

V. V. Pankov

Belarusian State University

Email: j_hajduk@list.ru
Belarus, Minsk, 220030

References

  1. Беляев Е.С., Ермолаев А.И., Титов Е.Ю., Тумаков С.Ф. Магнитореологические жидкости: технологии создания и применение: монография. Нижегород. гос. техн. ун-т им. Р.Е. Алексеева. 2017. 94 с.
  2. Vekas L. // Adv. Sci. Technol. 2008. V. 54. № 1. P. 127. https://doi.org/10.4028/www.scientific.net/ASТ. 54.127
  3. Fang F.F., Choi H.J., Jhonb M.S. // Colloids Surf. A: Physicochem. Eng. Aspects. 2009. V. 351. P. 46.
  4. Chary T.R.G., Allaparthi M., Dusa S. еt al. // Intelligent Manufacturing and Energy Sustainability. ICIMES 2023. Smart Innovation, Systems and Technologies. Singapore: Springer, 2024. V. 372. https://doi.org/10.1007/978-981-99-6774-2_46
  5. Корсакова А.С., Котиков Д.А., Гайдук Ю.С., Паньков В.В. // Конденсированные среды и межфазные границы. 2020. Т. 22. № 4. С. 466. https://doi.org/10.17308/kcmf.2020.22/3076
  6. Гордеев Б.А., Иванов Е.Г., Охулков С.Н. и др. // Вестник машиностроения. 2023. № 6. С. 499. https://doi.org/10.36652/0042-4633-2023-102-6-499-504
  7. Kordonsky W. // Materials Technology. 1993. V. 8. № 11/12. P. 240.
  8. Ghaffari A., Hashemabadi S., Ashtiani M. // J. Intell. Mater. Syst. Struct. 2015. V. 26. № 8. P. 881.
  9. Костров С.А., Тихонов П.А., Музафаров А.М., Крамаренко Е.Ю. // Высокомол. соединения. Сер. А. 2021. Т. 63. С. 198. https://doi.org/10.31857/S230811202103007X
  10. Шульман З.П., Кордонский В.И. Магнитореологический эффект. Минск: Наука и техника, 1982. 184 с.
  11. Гордеев Б.А., Ермолаев А.И., Охулков С.Н. и др. //Вестник машиностроения. 2023. № 3. С. 192. https://doi.org/10.36652/0042-4633-2023-102-3-192-201
  12. Гареев К.Г., Лучинин В.В., Мошников В.А. // Биотехносфера. 2013. Т. 5. № 29. С. 2.
  13. Lu A.-H., Salabas E.L., Schutz F. // Angew. Chem. Int. Ed.2007. V. 46. № 8. P. 1222. https://doi.org/10.1002/anie.200602866
  14. Новопашин С.А., Серебрякова М.А., Хмель С.Я. // Теплофизика и аэромеханика.2015. Т. 22. № 4. С. 411.
  15. Gupta A.K., Naregalkar R.R., Vaidya V. еt al. // Nanomedicine. 2007. V. 2. № 1. P. 23. https://doi.org/10.2217/17435889.2.1.23
  16. Mathew D.S.,Juang R.-S. // Chem. Eng. J. 2007. V. 129. № 1–3. P. 51. https://doi.org/10.1016/j.cej.2006.11.001
  17. Kciuk M., Turczyn R. // J. Achievements Mater. Manufacturing. Eng. 2006. V. 18. № 1–2. P. 127.
  18. Kumar J.S., Paul P.S., Raghunathan G., Alex D.G. // Int. J. Mech. Mater. Eng. 2019. V. 14. № 1. P. 1. https://doi.org/10.1186/s40712-019-0109-2
  19. Chiriac H., Stoian G. // IEEE Transactions on Magnetics. 2009. V. 45. № 10. P. 4049. https://doi.org/10.1109/tmag.2009.2024633
  20. Pu H., Jiang F. // Nanotechnology. 2005. V. 16. № 9. P. 1486. https://doi.org/10.1088/0957-4484/16/9/012
  21. Manuel J.G. de Falco, Bombard A.J.F., Weeks E.R. //Smart Mater. Struct. 2023. V. 32. № 4. P. 045014. https://doi.org/10.1088/1361-665X/acbb47
  22. Вест А. // Химия твердого тела. Теория и приложения. В 2-х ч. / Пер. с англ. М.: Мир, 1988. Ч. 1. 558 с.
  23. Skumryev V., Stoyanov S., Zhang Y. еt al. // Nature. 2003. V. 423. № 6942. P. 850. https://doi.org/10.1038/nature01687
  24. Першина А.Г., Сазонов А.Э., Мильто И.В. // Бюллетень сибирской медицины. 2008. Т. 7. № 2. С. 70. https://doi.org/10.20538/1682-0363-2008-2-70-78

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the saturation magnetization of MxFe3-xO4 on the degree of substitution (x) at 5 and 300 K [5].

Download (100KB)
3. Fig. 2. Diffractograms (a) and IR spectra (b) of powders of Mn0.3Fe2.7O4 composition after drying at 120С (1), firing at 740С (2), firing at 740С and subsequent high-energy grinding for 0.5 (3) and 1.0 h (4).

Download (194KB)
4. Fig. 3. Dependences of saturation magnetization of Mn0.3Fe2.7O4 on magnetic field strength: powder after firing in air for 2.0 h at 300С (a), after firing in argon for 8.0 h at 740С (b).

Download (135KB)
5. Fig. 4. SEM images of Mn0.3Fe2.7O4 powder before (a, b) and after (c) high-energy grinding in a ball disperser.

Download (1MB)
6. Fig. 5. Shear stress dependences of Mn0.3Fe2.7O4-based MRZh-4 (after firing at 740С and grinding for 1.0 h) at different shear rates and given values of magnetic induction (a, b) and flow curves (c).

Download (321KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».