Modeling of The Phase Complex Of A Stable Pentatope LiF-K2CrO4-Rb2CrO4-KF-RbF of the four-component mutual system Li+, K+, Rb+||F–, CrO

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The quasi-four-component system LiF–K2CrO4–Rb2CrO4–KF–RbF, which is a stable pentatope of the four-component mutual system Li+,K+,Rb+||F–,CrO, is selected for study. The prediction of non-invariant and monovariant equilibria in the system was carried out using the crystallization scheme: the eutectic equilibrium L ⇄ LiF + KxRb1–xF + α-K2xRb2–2xCrO4 + α-K3xRb3–3xFCrO4, is carried out in the system, which is confirmed by differential thermal analysis. The crystallization scheme makes it possible to predict non- and monovariant equilibria based on the analysis of faceting systems. The composition and melting point of the mixture corresponding to the four-component eutectic E□ 438 were revealed. Based on the data obtained, a 3D computer model of the phase complex of the system in the form of a concentration pentatope is constructed. The computer model clearly demonstrates the phase transformations in the system. The structure of the spatial phase diagram is revealed. In the system, the crystallizing phases are lithium fluoride, three phases of continuous series of solid solutions: based on potassium and rubidium fluorides – KxRb1–xF, based on potassium and rubidium chromates in α-polymorphic modification – α-K2xRb2–2xCrO4, based on potassium and rubidium fluoride chromates in α-polymorphic modification – α-K3xRb3–3xFCrO4.

Full Text

Restricted Access

About the authors

A. V. Burchakov

Samara State Technical University

Author for correspondence.
Email: turnik27@yandex.ru
Russian Federation, Samara, 443100

E. O. Burchakova

Samara State Technical University

Email: turnik27@yandex.ru
Russian Federation, Samara, 443100

References

  1. Babanly M.B., Chulkov E.V., Aliev Z.S. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 13. P. 1703. https://doi.org/10.1134/S0036023617130034
  2. Imamaliyeva S.Z., Babanly D.M., Tagiev D.B. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 13. P. 1704. https://doi.org/10.1134/S0036023618130041
  3. Dement’ev A.I., Rodyakina S.N., Kayumova D.B. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 10. P. 1379. https://doi.org/10.1134/S0036023617100060
  4. Ohayon D., Inal S. // Adv. Mater. 2020. V. 32. № 36. P. 2001439. https://doi.org/10.1002/adma.202001439
  5. Prabhu P., Lee J.M. // Chem. Soc. Rev. 2021. V. 50. № 12. P. 6700. https://doi.org/10.1039/D0CS01041C
  6. Wang K., Dowling A.W. // Current Opinion in Chemical Engineering. 2022. V. 36. P. 100728. https://doi.org/10.1016/j.coche.2021.100728
  7. Liu W.J., Jiang H., Yu H.Q. // Chem. Rev. 2015. V. 115. № 22. P. 12251. https://doi.org/10.1021/acs.chemrev.5b00195
  8. Yuan K., Shi J., Aftab W. et al. // Adv. Funct. Mater. 2020. V. 30. № 8. P. 1904228. https://doi.org/10.1002/adfm.201904228
  9. Beom Y.Y., Atinafu D.G., Sungwoong Y. et al. // J. Hazard. Mater. 2022. V. 423. P. 127147. https://doi.org/10.1016/j.jhazmat.2021.127147
  10. Коровин Н.В., Скундина А.М. Химические источники тока. М.: Изд-во МЭИ, 2003. 740 с.
  11. Гаркушин И.К., Дворянова Е.М., Губанова Т.В., Сухаренко М.А. Функциональные материалы. Самара: СамГТУ, 2015. Ч. 1. 387 с.
  12. Yazhenskikha E., Jantzen T., Kobertza D. // Calphad. 2021. V. 72. P. 102234. https://doi.org/10.1016/j.calphad.2020.102234
  13. Fedorov P.P., Popov A.A., Shubin Y.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2018. https://doi.org/10.1134/S0036023622601453
  14. Sukharenko M.A., Garkushin I.K., Osipov V.T. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2030. https://doi.org/10.1134/S0036023622601143
  15. Elokhov A.M., Kudryashova O.S. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1818. https://doi.org/10.1134/S0036023622600903
  16. Луцык В.И. Анализ поверхности ликвидуса тройных систем. М.: Наука, 1987. 150 с.
  17. Воробьева В.П. Автореф. дис. … док. хим. наук. Тюмень, 2012. 36 с.
  18. Воробьева В.П., Зеленая А.Э., Луцык В.И. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 798.
  19. Cheynet B., Bonnet C., Stankov M. // Calphad. 2009. V. 33. № 2. P. 312.
  20. Бурчаков А.В., Гаркушин И.К., Емельянова У.А. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 952. https://doi.org/10.31857/S0044457X22602085
  21. Термические константы веществ. М.: ВИНИТИ ИВТ АН СССР, 1981. Вып. 10. Ч. 1. С. 42.
  22. Термические константы веществ. База данных. Институт теплофизики экстремальных состояний РАН Объединенного института высоких температур РАН. Химический факультет МГУ им. М.В. Ломоносова. http://www.chem.msu.su/cgi-bin/tkv.pl?show=welcom.html
  23. Sangster J.M., Pelton A.D. // J. Phys. Chem. Ref. Data. 1987. V. 16. № 3. P. 509.
  24. ACerS-NIST. Phase Equilibria Diagrams. CD-ROM Database. Version 3.1.0. American Ceramic Society. National Institute of Standards and Technology. Order online: www.ceramics.org.
  25. Посыпайко В.И., Алексеева Е.А. Диаграммы плавкости солевых систем. Ч. III. Двойные системы с общим катионом. М.: Металлургия, 1979. 204 с.
  26. Воскресенская Н.К., Eвсеева Н.Н., Беруль С.И. и др. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР, 1961. Т. 1. 845 с.
  27. Sangster J.M., Pelton A.D. // Special Report to the Phase Equilibria Program. Part D: The 60 Ternary Common-Ion Systems Involving (Li, Na, K, Rb, Cs) and (F, Cl, Br, I). 1987. P. 2.
  28. Сидоров А.А., Бурчаков А.В. Фазовые равновесия в стабильном пентатопе Li2CrO4–KI–LiKCrO4–LiRbCrO4–RbI четырехкомпонентной взаимной системы Li,K,Rb||I,CrO4: выпускная квалификационная работа. Самара, 2019. 60 с.
  29. Бурчаков А.В., Тимошин Д.В., Егорова Е.М. и др. // Бутлеровские сообщения. 2018. Т. 55. № 7. С. 37.
  30. Бурчаков А.В., Бехтерева Е.М., Кондратюк И.М. // Журн. неорган. химии. 2013. Т. 58. № 11. С. 1511. https://doi.org/10.7868/S0044457X13110020
  31. Малышев Г.М., Рогожкина Д.Е., Бурчаков А.В. // Сб. тез. VI Междунар. молодежной науч. Конф. Физика. Технологии. Инновации. ФТИ-2019. Екатеринбург, 2019. С. 735.
  32. Вердиева З.Н., Бурчаков А.В., Вердиев Н.Н. и др. // Вестник Тверского гос. ун-та. Сер. Химия. 2019. № 3. С. 31. https://doi.org/10.26456/vtchem2019.3.4
  33. Альмяшев В.И., Гусаров В.В. Термические методы анализа. СПб: ЛЭТИ. 1999. 40 с.
  34. Уэндландт У. Термические методы анализа. М.: Мир, 1978.
  35. Мощенский Ю.В. Дифференциальный сканирующий калориметр ДСК-500. Приборы и техника эксперимента. 2003. № 6. С. 143.
  36. Егунов В.П. Введение в термический анализ. Самара, 1996. 270 с.
  37. Трунин А.С., Космынин А.С. Проекционно-термографический метод исследования гетерогенных равновесий в конденсированных многокомпонентных системах. Куйбышев, 1977. 68 с.
  38. Бурчаков А.В., Гаркушин И.К., Емельянова У.А. // Журн. неорган. химии. 2023. Т. 68. № 7. С. 952. https://doi.org/10.31857/S0044457X22602085
  39. ООО “АСКОН — Системы проектирования” https://kompas.ru/ (Дата обращения 14.10.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The tree of phases of the system Li+,K+,Rb+||F,CrO42–. D1 – LiRbCrO4, D2 – LiKCrO4. The crystallizing phases are predicted.

Download (177KB)
3. Fig. 2. Stable pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF of the Li+,K+,Rb+||F–,CrO system.

Download (210KB)
4. Fig. 3. Scheme of monovariant equilibria of the stable pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF.

Download (143KB)
5. Fig. 4. Cross section A–B–C–D of the stable pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF of the Li,K,Rb||F,CrO4 system. The fields of primary phase crystallization are indicated by numbers: 1 – (LiF + KxRb1–xF); 2 – (LiF + α-K3xRb3–3xCrO4).

Download (197KB)
6. Fig. 5. T–x-section diagram A–C of the A–B–C–D section in the pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF. The numbers indicate the phase regions: 1 – LiF + KxRb1–xF + α-K2xRb2–2xCrO4 + α-K3xRb3–3xCrO4; 2 – LiF + α-K2xRb2–2xCrO4 + + α-K3xRb3–3xCrO4.

Download (257KB)
7. Fig. 6. T–x is a diagram of the section B–D of the A–B–C–D section in the pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF.

Download (284KB)
8. Fig. 7. T–x is a diagram of the section LiF–M of the A–B–C–D section in the pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF.

Download (177KB)
9. Fig. 8. The model of the stable pentatope LiF–K2CrO4–Rb2CrO4–KF–RbF of the four-component mutual system Li,K,Rb||F,CrO4.

Download (306KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».