Thermal stability of (ZnS)(Ag2S)x heteronanostructures of zinc and silver sulfides

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Heteronanostructures (ZnS)(Ag2S)x with x from 0.002 to 0.50 were synthesized by hydrochemical coprecipitation. The size of ZnS nanoparticles in the resulting heteronanostructures is 2–4 nm. Annealing of synthesized heteronanostructures (ZnS)(Ag2S)x in air at temperatures from 25 to 530°C or more leads to a change in their phase composition due to the oxidation of cubic zinc sulfide to hexagonal zinc oxide. Oxidation begins at a temperature of ~250°C, and the zinc oxide content in them after annealing at 530°C reaches ~26–30 wt.%. The size of nanoparticles of the resulting ZnO ranges from 12 to 17–25 nm. A study of the oxidation of (ZnS)(Ag2S)x heteronanostructures in air showed that the initial mass loss observed upon heating to ~120°C is due to the removal of adsorbed moisture. The subsequent weight loss that occurs upon heating from ~250 to ~430–450°C is associated with the onset of oxidation of ZnS sulfide and the formation of ZnO oxide. The greatest weight loss is observed upon heating from ~450 to ~580°C and is due to an increase in the ZnO content, partial oxidation of sulfur and its removal in the form of SO2. The oxidation stages are confirmed by the presence of maxima in the temperature dependences of ion currents corresponding to H2O, CO2 and SO2. The studied heteronanostructures are thermally stable when heated to ~200–250°C.

作者简介

S. Sadovnikov

Institute of Solid State Chemistry, Ural Branch of the RAS

编辑信件的主要联系方式.
Email: sadovnikov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

S. Sergeeva

Institute of Metallurgy, Ural Branch of the RAS

Email: sadovnikov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

А. Gusev

Institute of Solid State Chemistry, Ural Branch of the RAS

Email: sadovnikov@ihim.uran.ru
俄罗斯联邦, Ekaterinburg

参考

  1. Fang X., Zhai T., Gautam U.K. et al. // Progr. Mater. Sci. 2011. V. 56. № 2. P. 175. https://doi.org/10.1016/j.pmatsci.2010.10.001
  2. Wang X., Huang H., Liang B. et al. // Crit. Rev. Solid State Mater. Sci. 2013. V. 38. № 1. P. 57. https://doi.org/10.1080/10408436.2012.736887
  3. Садовников С.И., Ремпель А.А., Гусев А.И. // Усп. химии. 2018. Т. 87. № 4. С. 303.
  4. Sadovnikov S.I. // Russ. Chem. Rev. 2019. V. 88. № 6. P. 571. https://doi.org/10.1070/RCR4867
  5. Liang C.H., Terabe K., Hasegawa T., Aono M. // Nanotechnology. 2007. V. 18. № 48. P. 485202. https://doi.org/10.1088/0957-4484/18/48/485202
  6. Hasegawa T., Terabe K., Tsuruoka T., Aono M. // Advanc. Mater. 2012. V. 24. № 2. P. 252. https://doi.org/10.1002/adma.201102597
  7. Yang H.-Y., Zhao Y.-W., Zhang Z.-Y., Xiong H.-M., Yu S.-N. // Nanotechnology. 2013. V. 24. № 5. P. 055706. http://dx.doi.org/10.1088/0957–4484/24/5/055706
  8. Lim W.P., Zhang Z., Low H.Y., Chin W.S. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
  9. Kryukov A.I., Stroyuk A.L., Zin’chuk N.N. et al. // J. Mol. Catal. A: Chem. 2004. V. 221. № 1–2. P. 209. https://doi.org/10.1016/j.molcata.2004.07.009
  10. Li H., Xie F., Li Wei. et al. // Catal. Surv. Asia. 2018. V. 22. № 3. P. 156. https://doi.org/10.1007/s10563-018-9249-2
  11. Садовников С.И., Ищенко А.В., Вайнштейн И.А. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1183. https://doi.org/10.31857/S0044457X20090147
  12. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1967. 448 с.
  13. Patnaik P. Dean’s Analytical Chemistry Handbook. New York: McGraw-Hill, 2004. 1280 p.
  14. Lee P.C., Meisel D. // J. Phys. Chem. 1982. V. 86. № 17. P. 3391. https://doi.org/10.1021/j100214a025
  15. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu., Rempel A.A. // Chem. Phys. Lett. 2015. V. 642. P. 17. http://dx.doi.org/10.1016/j.cplett.2015.11.004
  16. X’Pert HighScore Plus. Version 2.2e (2.2.5). Netherlands.
  17. Scherrer P. // Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 1918. V. 2. P. 98–100.
  18. Кривоглаз М. А. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М.: Наука, 1967. 336 с.
  19. Hall W.H. // Proc. Phys. Soc. London. 1949. Sect.A. V. 62. Part 11. № 359A. P. 741. https://doi.org/10.1088/0370-1298/62/11/110
  20. Williamson G.K., Hall W.H. // Acta Metallurg. 1953. V. 1. № 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  21. JCPDS card No. 005-0566
  22. Van Aswegen J.T.S., Verleger H. // Die Naturwissenschafien. 1960. V. 47. № 6. P. 131. https://doi.org/10.1007/BF00628510
  23. McMurdie H.F., Morris M.C., Evans E.H. et al. // Powder Diffraction. 1986. V. 1. № 2. P. 64. https://doi.org/10.1017/S0885715600011593
  24. JCPDS card No. 36-1451
  25. Xu Y.N., Ching W.Y. // Phys. Rev. B. 1993. V. 48. № 7. P. 4335.и тhttps://doi.org/10.1103/PhysRevB.48.4335
  26. Blanton T., Misture S., Dontula N., Zdzieszynski Z. // Powder Diffraction. 2011. V. 26. № 2. P. 114. https://doi.org/10.1154/1.3583564
  27. Corish J., O’Briain C.D. // J. Mater. Sci. 1971. V. 6. № 3. P. 252. https://doi.org/10.1007/BF00550020
  28. Bärtsch M., Niederberger M. // ChemPlusChem. 2017. V. 82. № 1. P. 42. https://doi.org/10.1002/cplu.201600519
  29. Sadovnikov S.I. // Mater. Sci. Semicond. Proc. 2022. V. 148. № 10. P. 106766. https://doi.org/10.1016/j.mssp.2022.106766
  30. NIST Chemistry WebBook. NIST Standard Reference Database Number 69. https://doi.org/10.18434/Т4D303
  31. Živković D., Sokić M., Živković Ž., Manasijević D., Lj. Balanović L., Štrbac N., Ćosović V., Boyanov B. // J. Therm. Anal. Calorim. 2013. V. 111. № 2. P. 1173. https://doi.org/10.1007/s10973-012-2300-z
  32. Sadovnikov S.I., Gusev A.I. // J. Therm. Anal. Calorim. 2018. V. 131. № 2. P. 1155. https://doi.org/10.1007/s10973-017-6691-8
  33. Fu Q.-S., Xue Y.-Q., Cui Z.-X., Wang M.-F. // J. Nanomater. (Hindawi). 2014. V. 2014. P. 856489. https://doi.org/10.1155/2014/856489
  34. Klyushnikov A.M., Pikalov S.M., Gulyaeva R.I. // Chim. Techno Acta. 2023. V. 10 № 2. P. 202310202. https://doi.org/10.15826/chimtech.2023.10.2.02
  35. Садовников С.И., Сергеева С.В. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 444. https://doi.org/10.31857/S0044457X22601936

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».