Thermodynamic characteristics of copper(I) perfluorocyclohexanoate C6F11COOCu

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The [Сu—C6F11COOAg] system was studied using thermogravimetry, differential scanning calorimetry and mass spectrometry methods. It has been established that in the temperature range 370–445 K, a solid-phase exchange reaction occurs in the condensed phase of the system with the formation of C6F11COOCu and silver. The enthalpy of this reaction was found to be ΔrHo298.15 = –17.5 ± 4.0 and the standard enthalpy of formation of a crystalline copper complex ΔfHo298.15 = –2769 ± 25 kJ/mol. Sublimation of the copper complex is accompanied by the transition into the gas phase of dimeric (C6F11COOCu)2 ΔsHoТ = 134.4 ± 7.2 kJ/mol and a small amount of tetrameric molecules (C6F11COOCu)4. The standard enthalpy of formation of the dimer complex in the gas phase was calculated to be ΔfHo298.15 = –5404 ± 26 kJ/mol. The paper examines the possibility of exothermic interaction of copper perfluorocyclohexanoate with metallic copper in the condensed phase.

About the authors

I. P. Malkerova

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Author for correspondence.
Email: alikhan@igic.ras.ru
Russian Federation, Moscow

D. B. Kayumova

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Russian Federation, Moscow

D. S. Yambulatov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Russian Federation, Moscow

А. V. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Russian Federation, Moscow

А. А. Sidorov

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Russian Federation, Moscow

А. S. Alikhanyan

Kurnakov Institute of General and Inorganic Chemistry of the RAS

Email: alikhan@igic.ras.ru
Russian Federation, Moscow

References

  1. Сыркин В.Г. CVD-метод. Химическая парофазная металлизация. М.: Наука, 2000. 496 с.
  2. Grodzicki A., Łakomska I., Piszczek P. et al. // Coord. Chem. Rev. 2005. V. 249. P. 2232. https://doi.org/10.1016/j.ccr.2005.05.026
  3. Jakob A., Shen Y., Wächtler T. et al. // Z. Anorg. Allg. Chem. 2008. V. 634. P. 2226. https://doi.org/10.1002/zaac.200800189
  4. Mothes R., Rüffer T., Shen Y. et al. // Dalton Trans. 2010. V. 39. P. 11235. https://doi.org/10.1039/C0DT00347F
  5. Choi K.-K., Rhee S.-W. // Thin Solid Films. 2001. V. 397. P. 70. https://doi.org/10.1016/S0040-6090(01)01406-7
  6. Jang J., Chung S., Kang H. et al. // Thin Solid Films. 2016. V. 600. P. 157. https://doi.org/10.1016/j.tsf.2016.01.036
  7. Huo J., Solanki R., McAndrew J. // J. Mater. Res. 2002. V. 17. P. 2394. https://doi.org/10.1557/JMR.2002.0350
  8. Li Z., Barry S.T., Gordon R.G. // Inorg. Chem. 2005. V. 44. P. 1728. https://doi.org/10.1021/ic048492u
  9. Hlina J., Reboun J., Hamacek A. // Scripta Mater. 2020. V. 176. P. 23. https://doi.org/10.1016/j.scriptamat.2019.09.029
  10. Cory N.J., Visser E., Chamier J. et al. // Appl. Surf. Sci. 2022. V. 576. P. 151822. https://doi.org/10.1016/j.apsusc.2021.151822
  11. Yildirim G., Yücel E. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 19057. https://doi.org/10.1007/s1085-022-08743-3
  12. Good W., Scott D., Waddington G. // J. Phys. Chem. 1956. V. 60. P. 1080. https://doi.org/10.1021/j150542a014
  13. Morozova E.A., Dobrokhotova Zh.V., Alikhanyan A.S. // J. Therm. Anal. Calorim. 2017. V. 130. P. 2211. https://doi.org/10.1007/s10973-017-6583-y
  14. Kayumova D.B., Malkerova I.P., Yambulatov D.S. et al. // Russ.J. Coord. Chem. 2024. V. 50. No. 3. P. 211
  15. Gribchenkova N.A., Alikhanyan A.S. // J. Alloys Compd. 2019. V. 778. P. 77. https://doi.org/10.1016/j.jallcom.2018.11.136
  16. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1972. Т. VI. Ч. I.
  17. Chase M.W., Jr., Curnutt J.L., Downey J.R., Jr. et al. // J. Phys. Chem. Ref. Data. 1982. V. 11. P. 695. https://doi.org/10.1063/1.555666
  18. Ehlert T.C., Wang J.S. // J. Phys. Chem. 1977. V. 81. P. 2069. https://doi.org/10.1021/j100537a005
  19. Ehlert T.C. // J. Phys. Chem. 1969. V. 73. P. 949. https://doi.org/10.1021/j100724a032
  20. Chase M.W., Jr. // J. Phys. Chem. Ref. Data. 1998. V. 9. P. 1.
  21. Kolesov V.P., Zenkov I.D., Skuratov S.M. // Russ. J. Phys. Chem. 1962. V. 36. P. 45.
  22. Термические константы веществ / Под ред. Глушко В.П. М.: ВИНИТИ, 1970. Т. IV. Ч. I.
  23. Amphlett J.C., Dacey J.R., Pritchard G.O. // J. Phys. Chem. 1971. V. 75. P. 3024. https://doi.org/10.1021/j100688a028
  24. Смирнова Н.Н., Лебедев Б.В. // Высокомолекулярные соединения. 1990. Т. 32. № 12. С. 2356.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».