Quantum chemical modeling of supertetrahedral crystal structures containing C4 and X4 (X = B, Al, Ga) tetrahedra
- Authors: Getmanskii I.V.1, Zaitsev S.А.1, Koval V.V.1, Minyaev R.М.1
-
Affiliations:
- Southern Federal University
- Issue: Vol 69, No 5 (2024)
- Pages: 743-750
- Section: ТЕОРЕТИЧЕСКАЯ НЕОРГАНИЧЕСКАЯ ХИМИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/270847
- DOI: https://doi.org/10.31857/S0044457X24050129
- EDN: https://elibrary.ru/YEUTNM
- ID: 270847
Cite item
Abstract
Using quantum chemical calculations performed within the framework of electron density functional theory, the structural, mechanical, thermal, electrical and optical properties of three new mixed-type supertetrahedral structures based on the diamond crystal lattice were studied, in which pairs of neighboring carbon atoms are replaced by a pair of tetrahedra, one of which consists of four carbon atoms, and the second of four boron, aluminum or gallium atoms. The calculations have shown that all three crystalline structures should be structurally stable and have a low density, and the density of the aluminum-carbon structure should be even lower than the density of water (0.97 g/cm3). The boron-carbon structure should have the highest hardness (24 GPa), the hardness of the other two structures should be four times lower. All three crystal structures should be narrow-gap semiconductors with a band gap of 0.65–1.87 eV.
About the authors
I. V. Getmanskii
Southern Federal University
Author for correspondence.
Email: ipoc-sfu@mail.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonS. А. Zaitsev
Southern Federal University
Email: ipoc-sfu@mail.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonV. V. Koval
Southern Federal University
Email: ipoc-sfu@mail.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonR. М. Minyaev
Southern Federal University
Email: ipoc-sfu@mail.ru
Research Institute of Physical and Organic Chemistry
Russian Federation, Rostov-on-DonReferences
- Minkin V.I., Minyaev R.M. // Russ. Chem. Rev. 1982. V. 51. P. 332. https://doi.org/10.1070/RC1982v051n04ABEH002844
- Brown H.C. The Nonclassical Ion Problem. New York: Springer, 1977. 302 p. https://doi.org/10.1007/978-1-4613-4118-5
- Greenberg Α., Liebman J.F. Strained Organic Molecules. New York: Acad. Press, 1978. 406 p.
- Minyaev R.M., Getmanskii I.V., Minkin V.I. // Russ. J. Inorg. Chem. 2014. V. 59. P. 332. 406 p. https://doi.org/10.1134/S0036023614040123
- Minyaev R.M., Popov I.A., Koval V.V. et al. // Struct. Chem. 2015. V. 26. P. 223. https://doi.org/10.1007/s11224-014-0540-1
- Charkin O.P. // Russ. J. Inorg. Chem. 2019. V. 64. P. 615. https://doi.org/10.1134/S0036023619050048
- Klyukin I.N., Kolbunova A.V., Novikov A.S. et al. // Inorganics. 2023. V. 11. P. 201. https://doi.org/10.3390/inorganics11050201
- Zyubin A.S., Zyubina T.S., Dobrovol’skii Yu.A., Volokhov V.M. // Russ. J. Inorg. Chem. 2016. V. 61. P. 48. https://doi.org/10.1134/S0036023616010241
- Matveev E.Yu., Kubasov A.S., Nichugovskii A.I. et al. // Russ. J. Inorg. Chem. 2023. V. 68. P. 644. https://doi.org/10.1134/S0036023623600545
- Burdett J.K., Lee S. // J. Am. Chem. Soc. 1985. V. 107. P. 3063. https://dx.doi.org/10.1021/ja00297a011
- Johnston R.L., Hoffmann R. // J. Am. Chem. Soc. 1989. V. 111. P. 810. https://doi.org/10.1021/ja00185a004
- Minyaev R.M., Avakyan V.E. // Dokl. Chem. 2010. V. 434. P. 253. https://doi.org/10.1134/S0012500810100010
- Sheng X.-L., Yan Q.-B., Ye F. et al. // Phys. Rev. Lett. 2011. V. 106. P. 155703. https://doi.org/10.1103/PhysRevLett.106.155703
- Zhang J., Wang R., Zhu X. et al. // Nature Comm. 2017. V. 8. P. 683. https://doi.org/10.1038/s41467-017-00817-9
- Haunschild R., Frenking G. // Mol. Phys. 2009. V. 107. P. 911. http://dx.doi.org/10.1080/00268970802680505
- Getmanskii I.V., Minyaev R.M., Steglenko D.V. et al. // Angew. Chem. Int. Ed. 2017. V. 56. P. 10118. https://doi.org/10.1002/anie.201701225
- Getmanskii I.V., Koval V.V., Minayev R.M. et al. // J. Phys. Chem. C. 2017. V. 121. P. 22187. http://dx.doi.org/10.1021/acs.jpcc.7b07565
- Getmanskii I.V., Koval V.V., Minyaev R.M. et al. // J. Comput. Chem. 2019. V. 40. P. 1861. https://doi.org/10.1002/jcc.25837
- Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1993. V. 47. P. 558. https://doi.org/10.1103/PhysRevB.47.558
- Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 49. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
- Kresse G., Furthmüller J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1996. V. 54. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
- Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
- Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Phys. Rev. Lett. 2008. V. 100. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
- Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
- Kresse G., Joubert D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1999. V. 59. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
- Monkhorst H.J., Pack J.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1976. V. 13. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
- Togo A., Chaput L., Tadano T., Tanaka I. // J. Phys.: Condens. Matter. 2023. V. 35. P. 353001. http://dx.doi.org/10.1088/1361-648X/acd831
- Togo A. // J. Phys. Soc. Jpn. 2023. V. 92. № 012001. http://dx.doi.org/10.7566/JPSJ.92.012001
- Togo A., Chaput L., Tanaka I. // Phys. Rev. B. 2015. V. 91. № 094306. https://doi.org/10.1103/PhysRevB.91.094306
- Hill R. // Proc. Phys. Soc. A. 1952. V. 65. P. 349. https://doi.org/10.1088/0370–1298/65/5/307
- Šimůnek A., Vackář J. // Phys. Rev. Lett. 2006. V. 96. P. 085501. https://doi.org/10.1103/PhysRevLett.96.085501
- Liu Z.Y., Guo X., He J. // Phys. Rev. Lett. 2007. V. 98. P. 109601. https://doi.org/10.1103/PhysRevLett.98.109601
- Šimůnek A., Vackář J. // Phys. Rev. Lett. 2007. V. 98. P. 109602. https://doi.org/10.1103/PhysRevLett.98.109602
- Šimůnek A., Vackář J. // Phys. Rev. B. 2007. V. 75. P. 172108. https://doi.org/10.1103/PhysRevB.75.172108
- Frisch M.J. et al. Gaussian 16, Revision C.01 / Gaussian, Inc. Wallingford CT, 2019. https://gaussian.com
- Zubarev D.Yu., Boldyrev A.I. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 5207. https://doi.org/10.1039/B804083D
- Tkachenko N.V., Boldyrev A.I. // Phys. Chem. Chem. Phys. 2019. V. 21. P. 9590. https://doi.org/10.1039/C9CP00379G
- Schaftenaar G., Noordik J.H. // J. Comput. Aided Mol. Des. 2000. V. 14. P. 123. https://doi.org/10.1023/A:1008193805436
- Schaftenaar G., Vlieg E., Vriend G. // J. Comput. Aided Mol. Des. 2017. V. 31. P. 789. https://doi.org/10.1007/s10822–017–0042–5
- Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V. 14. P. 33. https://doi.org/10.1016/0263–7855(96)00018–5
- POV-Ray 3.7.0 / Persistence of Vision Pty. Ltd. Williamstown, Victoria, Australia, 2013. https://www.povray.org
- Momma K., Izumi F. // J. Appl. Crystallogr. 2011. V. 44. P. 1272. https://doi.org/10.1107/S0021889811038970
Supplementary files
