Structural variability of rare-earth bromide complexes with acetylurea

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New coordination compounds of light rare-earth (RE) bromides with acetylurea (AsUr) were synthesized, [Y(AcUr)2(H2O)4]1.39[Y(AcUr)2(H2O)5]0.61Br6·2H2O (I), [La(AcUr)2(H2O)5]Br3 (II), [Ce(AcUr)2(H2O)5]Br3 (III), [Nd(AcUr)2(H2O)5]Br3 (IV), [Sm(AcUr)2(H2O)5]Br3 (V); elemental analysis, IR spectroscopy and X-ray diffraction were used to determine their compositions and structural features. Compound I is built of the [Y(AcUr)2(H2O)4]3+ and [Y(AcUr)2(H2O)5]3+ cations in the 2.28 : 1; they differ by the number of the inner-sphere water molecules (4 and 5 for coordination numbers 8 and 9, respectively), non-coordinated Br ions and H2O molecules. Compounds II and III are built of the [Ln(AcUr)2(H2O)5]3+ (Ln = La, Ce) cations and outer-sphere Br ions. The structures changes on cooling from 296 K to 100 K being isostructural at both temperatures. Compounds IV and V have the same composition, but different structures. They also have different polymorphous modifications at 100 and 296 K. Samarium, terbium and dysprosium bromide complexes of acetyl urea show photoluminescence.

Sobre autores

P. Akulinin

MIREA — Russian Technological University

Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

Е. Savinkina

MIREA — Russian Technological University

Autor responsável pela correspondência
Email: savinkina@mirea.ru

Lomonosov Institute of Fine Chemical Technologies

Rússia, Moscow

М. Grigoriev

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: savinkina@mirea.ru
Rússia, Moscow

Yu. Belousov

Lomonosov Moscow State University; Lebedev Physical Institute RAS

Email: savinkina@mirea.ru

Faculty of Chemistry

Rússia, Moscow; Moscow

Bibliografia

  1. Shibasaki M., Yoshikawa N. // Chem. Rev. 2002. V. 102. № 6. P. 2187. https://doi.org/10.1021/cr010297z
  2. Binnemans K. // Chem. Rev. 2009. V. 109. № 9. P. 4283. https://doi.org/10.1021/cr8003983
  3. Woodruff D.N., Winpenny R.E.P., Layfield R.A. // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
  4. Lanthanides, tantalum, and niobium: mineralogy, geochemistry, characteristics of primary ore deposits, prospecting, processing and applications. Proceedings of a workshop in Berlin, November 1986 / Eds. Möller P., Černý P., Saupé F. Berlin, Heidelberg: Springer-Verlag, 1989. 380 p.
  5. Seitz M., Oliver A.G., Raymond K.N. // J. Amer. Chem. Soc. 2007. V. 129. № 36. P. 11153. https://doi.org/10.1021/ja072750f
  6. Cotton S.A., Raithby P.R. // Coord. Chem. Rev. 2017. V. 340. P. 220. https://doi.org/10.1016/j.ccr.2017.01.011
  7. Cotton S. Lanthanide and actinide chemistry. John Wiley & Sons, 2013. 288 p.
  8. Cotton S.A. // Chimie. 2005. V. 8. № 2. P. 129. https://doi.org/10.1016/j.crci.2004.07.002
  9. Kim P., Anderko A., Navrotsky A., Riman R.E. // Minerals. 2018. V. 8. № 3. P. 106. https://doi.org/10.3390/min8030106
  10. Gumin´ski C., Voigt H., Zeng D. // Monatsh. Chem. 2011. V. 142. P. 211. https://doi.org/10.1007/s00706-011-0457-y
  11. Yin X., Wang Y., Bai X., et al. // Nat. Commun. 2017. V. 8. P. 14438. https://doi.org/10.1038/ncomms14438
  12. Savinkina E.V., Golubev D.V., Podgornov K.V., et al. // Z. Anorg. Allgem. Chem. 2013. V. 639. № 1. P. 53. https://doi.org/10.1002/zaac.201200267
  13. Аликберова Л.Ю., Альбов Д.В., Бушмелева А.С. и др. // Коорд. химия. 2014. Т. 40. № 12. С. 748.
  14. Isbjakowa A.S., Grigoriev M.S., Golubev D.V., Savinkina E.V. // J. Mol. Struct. 2020. V. 1201. №. 127141. https://doi.org/10.1016/j.molstruc.2019.127141
  15. Bushmeleva A.S., Alikberova L.Y., Albov D.V. // Advancing Coordination, Bioinorganic and Applied Inorganic Chemistry. The 50th Anniversary of ICCBIC / Eds. Melník M., Segľa P., Tatarko M. Bratislava: Slovak Chemical Society, 2015. P. 27–40.
  16. Savinkina E.V., Akulinin P.V., Golubev D.V., Grigoriev M.S. // Polyhedron. 2021. V. 204. P. 115258. https://doi.org/10.1016/j.poly.2021.115258
  17. Sheldrick G.M. SADABS. Madison, Wisconsin (USA): Bruker AXS, 2008.
  18. Sheldrick G.M. // Acta Crystallogr. Sect. A. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
  19. Sheldrick G.M. // Acta Crystallogr. Sect. C. 2015. V. 714. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
  20. Bünzli J.-C.G., Eliseeva S.V. // Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects / Eds. Hänninen P., Härmä H. Berlin, Heidelberg: Springer-Verlag, 2011. P. 1.
  21. Kimura T., Kato Y. // J. Alloys Compd. 1998. V. 275. P. 806. https://doi.org/10.1016/S0925-8388(98)00446-0
  22. Kiskin M.A., Taydakov I.V., Metlin M.T. et al. // Dye. Pigment. 2022. V. 199. № 110078. https://doi.org/10.1016/j.dyepig.2021.110078
  23. Feng X., Li S.-H., Wang L-Y. et al. // CrystEngComm. 2012. V. 14. № 10. P. 3684. https://doi.org/10.1039/C2CE06151A
  24. Savinkina E.V., Golubev D.V., Grigoriev M.S., Kornilov A. // J. Mol. Struct. 2021. V. 1227. №. 5. P. 129526. https://doi.org/10.1016/j.molstruc.2020.129526
  25. Аликберова Л.Ю., Антоненко Т.А., Альбов Д.В. // Тонкие химические технологии. 2015. Т. 10. № 1. С. 66.
  26. Haddad S.F. // Acta Crystallogr. Sect. C. 1988. V. 44. № 5. P. 815. https://doi.org/10.1107/S010827018800054X
  27. Haddad S.F. // Acta Crystallogr. Sect. C. 1987. V. 43. № 10. P. 1882. https://doi.org/10.1107/S0108270187089753
  28. Корнилов А.Д., Григорьев М.С., Савинкина Е.В. // Тонкие химические технологии. 2022. Т. 17. № 2. С. 172.
  29. Заполоцкий Е.Н., Бабаилов С.П. // Известия АН. Сер. Химическая. 2022. Т. 71. № 10. С. 2165.
  30. Заполоцкий Е. Н., Бабайлов С. П. Журн. неорган. химии. 2022. T. 67. № 11. С. 1646.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».