Research of the photocatalytic activity of nano-sized powder and fiber based on nickel-zinc ferrite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Nano-sized powder and nanostructured fibers of nickel-zinc ferrite with the composition Ni0.5Zn0.5Fe2O4 were synthesized. By means of X-ray diffraction analysis, it was proven that the synthesized samples correspond to the nickel-zinc ferrite phase. Based on the data obtained, it was established that fibers based on nickel-zinc ferrite have a higher value of the crystal lattice parameter and crystallite size than the synthesized nano-sized powder. SEM data confirm that the samples under study consist of nanosized particles: 20–60 nm for powder and 20–40 nm for fibers. The optical diffuse reflection method was used to determine the band gap for Ni0.5Zn0.5Fe2O4 samples, which was 1.58 eV for fibers and 1.67 eV for powder. The photocatalytic degradation of methylene blue under the action of Ni0.5Zn0.5Fe2O4 samples of various morphologies has been studied. It was determined that a sample of nanostructured Ni0.5Zn0.5Fe2O4 fibers has greater photocatalytic activity, since the degree of degradation of methylene blue was 26% for nanofibers and 18% for nanopowder.

About the authors

S. N. Ivanin

Kuban State University; Kuban State Agrarian University named after. I.T. Trubilina

Author for correspondence.
Email: ivanin18071993@mail.ru
Russian Federation, Krasnodar; Krasnodar

V. Yu. Buz’ko

Kuban State University; Kuban State Technological University

Email: ivanin18071993@mail.ru
Russian Federation, Krasnodar; Krasnodar

R. P. Yakupov

Kuban State University

Email: ivanin18071993@mail.ru
Russian Federation, Krasnodar

I. V. Suhno

Kuban State Agrarian University named after. I.T. Trubilina

Email: ivanin18071993@mail.ru
Russian Federation, Krasnodar

References

  1. Silva E.D.N., Brasileiro I.L.O., Madeira V.S. et al. // J. Environ. Chem. Eng. 2020. V. 8. P. 104132. https://doi.org/10.1016/j.jece.2020.104132
  2. Dehghani F., Hashemian S., Shibani A. // J. Ind. Eng. Chem. 2017. V. 48. P. 36. https://doi.org/10.1016/j.jiec.2016.11.022
  3. Šutka A., Gross A. // Sens. Actuators B. 2016. V. 222. P. 95. https://doi.org/10.1016/j.snb.2015.08.027
  4. Beyki M.H., Ganjbakhsh S.E., Minaeian S. et al. // Carbohydr. Polym. 2017. V. 15. P. 128. https://doi.org/10.1016/j.carbpol.2017.06.056
  5. Zhang W., Zhou P., Liu W. et al. // J. Mol. Liq. 2020. V. 315. P. 113682. https://doi.org/10.1016/j.molliq.2020.113682
  6. Kumar R., Jasrotia R., Himanshi P. et al. // Inorg. Chem. Commun. 2023. V. 157. P. 111355. https://doi.org/10.1016/j.inoche.2023.111355
  7. Li Y., Li Y., Xu X. et al. // Chem. Geol. 2019. V. 504. P. 276. https://doi.org/10.1016/j.chemgeo.2018.11.022
  8. Jadhav S.A., Somvanshi S.B., Khedkar M.V. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. P. 11352. https://doi.org/10.1007/s10854-020-03684-1
  9. Jacinto M.J., Ferreira L.F., Silva V.C. // J. Sol. Gel Sci. Technol. 2020. V. 96. P. 1. https://doi.org/10.1007/s10971-020-05333-9
  10. Manohar A., Chintagumpala K., Kim K.H. // Ceram. Int. 2021. V. 47. P. 7052. https://doi.org/10.1016/j.ceramint.2020.11.056
  11. Rosales-Gonzalez O., Bolarín-Miro A.M., Cortes-Escobedo C.A. et al. // Ceram. Int. 2022. V. 49. № 4. P. 6006. https://doi.org/10.1016/j.ceramint.2022.10.101
  12. Reddy D.H.K., Yunang Y.-S. // Coord. Chem. Rev. 2016. V. 315. P. 90. https://doi.org/10.1016/j.ccr.2016.01.012
  13. Hammad A.B.A., Hemdan B.A., Nahrawy A.M.E. // J. Environ. Manage. 2020. V. 270. P. 110816. https://doi.org/10.1016/j.jenvman.2020.110816
  14. Kefeni K.K., Mamba B.B. // Sustain. Mater. Technol. 2020. V. 23. P. e00140. https://doi.org/10.1016/j.susmat.2019.e00140
  15. Sharma S.S., Dutta V., Raizada P. // J. Environ. Chem. Eng. 2021. V. 9. P. 105812. https://doi.org/10.1016/j.jece.2021.105812
  16. Susmita P., Amarjyoti C. // Appl. Nanosci. 2014. V. 4. P. 839. https://doi.org/10.1007/s13204-013-0264-3
  17. Estrada-Flores S., Martínez-Luévanos A., Perez-Berumen C.M. // Bol. Soc. Espan. Ceram. Vid. 2020. V. 59. № 5. P. 209. https://doi.org/10.1016/j.bsecv.2019.10.003
  18. Martinson K.D., Belyak V.E., Sakhno D.D. // Nanosystems: Phys., Chem., Math. 2021. V. 12. № 6. P. 792. https://doi.org/10.17586/2220-8054-2021-12-6-792-798
  19. Liu Y., Li Z., Green M. // J. Phys. D: Appl. Phys. 2017. V. 50. № 19. P. 193003. https://doi.org/10.1088/1361-6463/aa6500
  20. Paromova А.А., Sinitsina А.А., Boitsova Т.B. et al. // Russ. J. Gen. Chem. 2023. V. 93. № 2. P. 345. https://doi.org/10.1134/S1070363223020159
  21. Садовников А.А., Нечаев Е.Г., Бельтюков А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 432. https://doi.org/10.31857/S0044457X2104019X
  22. Lavand A.B., Bhatu M.N., Malghe Y.S. // J. Mater. Res. Technol. 2018. V. 8. № 1. P. 299. https://doi.org/10.1016/j.jmrt.2017.05.019
  23. Nabiyouni G., Ghanbari D., Ghasemi J. // J. Nano Struct. 2015. V. 5. № 3. P. 289. https://doi.org/ 10.7508/jns.2015.03.011
  24. Mohd Q., Khushnuma A., Braj R.S. et al. // Spectrochim. Acta Part A. 2015. V. 137. P. 1348. https://doi.org/10.1016/j.saa.2014.09.039.
  25. Shamray I.I., Buz’ko V.Yu., Goryachko A.I. // IOP Conf. Ser.: Mater. Sci. Eng. 2020. V. 969. P. 012101. https://doi.org/10.1088/1757-899X/969/1/012101
  26. Buz’ko V.Yu., Shamrai I.I., Ryabova M.Yu. et al. // Inorg. Mater. 2021. V. 57. № 1. P. 38. https://doi.org/10.1134/S0020168521010027
  27. Yan L., Yue M., Shaofeng Z. et al. // Asian J. Chem. 2013. V. 25. № 10. P. 5781. https://doi.org/10.14233/ajchem.2013.OH89
  28. Ma W., Wang N., Yang L. // J. Mater. Sci. Mater. Electron. 2019. V. 30. P. 20432. https://doi.org/10.1007/s10854-019-02382-x
  29. Nag S., Ghosh A., Das D. et al. // Synth. Met. 2020. V. 267. P. 116459. https://doi.org/10.1016/j.synthmet.2020.116459
  30. Chehade W., Basma H.M., Abdallah A. et al. // Ceram. Int. 2022. V. 48. № 1. P. 1238. https://doi.org/10.1016/j.ceramint.2021.09.209
  31. Dhiman P., Rana G., Dawi E.A. et al. // Water. 2023. V. 15. P. 187. https://doi.org/10.3390/w15010187
  32. Liu R., Zhang Y., Li H. et al. // J. Nanosci. Nanotechnol. 2015. V. 15. № 6. P. 4574. https://doi.org/10.1166/jnn.2015.9773
  33. Yang X., Wang Z., Jing M. et al. // Water, Air, Soil Pollut. 2014. V. 225. P. 1819. https://doi.org/10.1007/s11270-013-1819-3
  34. Martinson K.D., Sakhno D.D., Belyak V.E. et al. // Nanosystems: Phys., Chem., Math. 2020. V. 11. № 5. P. 595. https://doi.org/10.17586/2220-8054-2020-11-5-595-600.
  35. Martinson K.D., Beliaeva A.D., Sakhno D.D. et al. // Water. 2022. V. 14. P. 454. https://doi.org/10.3390/w14030454
  36. Vyzulin S.A., Kalikintseva D.A., Miroshnichenko E.L. et al. // Bull. Russ. Acad. Sci: Phys. 2018. V. 82. № 11. P. 1451. https://doi.org/10.3103/S1062873818110242
  37. Vyzulin S.A., Kalikintseva D.A., Miroshnichenko E.L. et al. // Bull. Russ. Acad. Sci: Phys. 2018. V. 82. № 8. P. 943. https://doi.org/10.3103/S1062873818080439
  38. Kalikintseva D.A., Buz’ko V.Y., Vyzulin S.A. et al. // Izvest. Ross. Akad. Nauk. Ser. Fizich. 2021. V. 85. № 1. P. 112. https://doi.org/10.31857/S0367676521010142
  39. Surendran P., Lakshmanan A., Sakthy Priya S. et al. // Appl. Phys. A. 2020. V. 126. P. 257. https://doi.org/10.1007/s00339-020-3435-6
  40. Якупов Р.П., Бузько В.Ю., Иванин С.Н., Панюшкин В.Т. Пат. RU 2802465 Cl. 29.08.2023.
  41. Makula P., Pacia M., Macyk W. // J. Phys. Chem. Lett. 2018. V. 9. P. 6814. https://doi.org/10.1021/acs.jpclett.8b02892

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».