Synthesis, Ion-Exchange and Photocatalytic Properties of Layered Perovskite-Like CsBa2Nb3O10 Niobate: Comparative Analysis with Related AA′2Nb3O10 Dion-Jacobson Phases (A = K, Rb, Cs; A′ = Ca, Sr, Pb)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Layered perovskite-like niobate CsBa2Nb3O10 has been synthesized in a pure single-phase state for the first time using both nitrates and carbonates of cesium and barium. Unlike its Ca-, Sr- and Pb-containing analogues, the niobate obtained was shown not to undergo substitution of interlayer alkali cations with protons (protonation) upon acid treatments under various conditions. A potential reason for its chemical inactivity may consist in partial disordering of cesium and barium cations between the interlayer space and perovskite slab, hindering the interlayer ion exchange. Optical bandgap energy of CsBa2Nb3O10, being equal to 2.8 eV, potentially allows using visible light (λ < 443 nm) for driving photocatalytic reactions. However, the photocatalytic potential of this niobate towards hydrogen production remains untapped since the activity of the interlayer space in protonation and hydration reactions, as shown earlier, is a fundamentally important factor determining the photocatalytic performance of ion-exchangeable layered perovskite-like oxides.

Full Text

Restricted Access

About the authors

S. A. Kurnosenko

Saint Petersburg State University

Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

O. I. Silyukov

Saint Petersburg State University

Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

I. A. Rodionov

Saint Petersburg State University

Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

Ya. P. Biryukov

Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

A. A. Burov

Saint Petersburg State University

Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

I. A. Zvereva

Saint Petersburg State University

Author for correspondence.
Email: irina.zvereva@spbu.ru
Russian Federation, Saint Petersburg

References

  1. Dion M., Ganne M., Tournoux M. // Mater. Res. Bull. 1981. V. 16. № 11. P. 1429. https://doi.org/10.1016/0025-5408(81)90063-5
  2. Domen K., Ebina Y., Sekine T. et al. // Catal. Today. 1993. V. 16. № 3–4. P. 479. https://doi.org/10.1016/0920-5861(93)80088-I
  3. Jacobson A.J., Lewandowski J.T., Johnson J.W. // J. Less Common Met. 1986. V. 116. № 1. P. 137. https://doi.org/10.1016/0022-5088(86)90224-9
  4. Kawaguchi T., Horigane K., Itoh Y. et al. // Phys. B: Condens. Matter. 2018. V. 536. P. 830. https://doi.org/10.1016/j.physb.2017.09.060
  5. Fang L., Zhang H., Yuan R. // J. Wuhan University of Technology-Mater. Sci. Ed. 2002. V. 17. № 2. P. 3. https://doi.org/10.1007/BF02832614
  6. Mahler C.H., Cushing B.L., Lalena J.N. et al. // Mater. Res. Bull. 1998. V. 33. P. 1581. https://doi.org/10.1016/S0025-5408(98)00166-4
  7. Fang M., Kim C.H., Mallouk T.E. // Chem. Mater. 1999. V. 11. P. 1519. https://doi.org/10.1021/cm981065s
  8. Yoshimura J., Ebina Y., Kondo J. et al. // J. Phys. Chem. 1993. V. 97. № 9. P. 1970. https://doi.org/10.1021/j100111a039
  9. Liou Y., Wang C.M. // J. Electrochem. Soc. 1996. V. 143. № 5. P. 1492. https://doi.org/10.1149/1.1836668
  10. Ziegler C., Dennenwaldt T., Weber D. et al. // Z. Anorg. Allg. Chem. 2017. V. 643. № 21. P. 1668. https://doi.org/10.1002/zaac.201700269
  11. Fukuoka H., Isami T., Yamanaka S. // J. Solid State Chem. 2000. V. 151. № 1. P. 40. https://doi.org/10.1006/jssc.2000.8619
  12. Schaak R.E., Mallouk T.E. // Chem. Mater. 2002. V. 14. № 4. P. 1455. https://doi.org/10.1021/cm010689m
  13. Tahara S., Sugahara Y. // Langmuir. 2003. V. 19. № 22. P. 9473. https://doi.org/10.1021/la0343876
  14. Tahara S., Takeda Y., Sugahara Y. // Chem. Mater. 2005. V. 17. № 16. P. 6198. https://doi.org/10.1021/cm0514793
  15. Shimada A., Yoneyama Y., Tahara S. et al. // Chem. Mater. 2009. V. 21. № 18. P. 4155. https://doi.org/10.1021/cm900228c
  16. Khramova A.D., Silyukov O.I., Kurnosenko S.A. et al. // Molecules. 2023. V. 28. № 12. P. 4807. https://doi.org/10.3390/molecules28124807
  17. Voytovich V.V., Kurnosenko S.A., Silyukov O.I. et al. // Front. Chem. 2020. V. 8. https://doi.org/10.3389/fchem.2020.00300
  18. Voytovich V.V., Kurnosenko S.A., Silyukov O.I. et al. // Catalysts. 2021. V. 11. № 8. P. 897. https://doi.org/10.3390/catal11080897
  19. Ebina Y., Sasaki T., Watanabe M. // Solid State Ionics. 2002. V. 151. P. 177. https://doi.org/10.1016/S0167-2738(02)00707-5
  20. Sasaki T. // J. Ceram. Soc. Jpn. 2007. V. 115. № 1337. P. 9. https://doi.org/10.2109/jcersj.115.9
  21. Nicolosi V., Chhowalla M., Kanatzidis M.G. et al. // Science. 2013. V. 340. № 6139. P. 1226419. https://doi.org/10.1126/science.1226419
  22. Wang T.H., Henderson C.N., Draskovic T.I. et al. // Chem. Mater. 2014. V. 26. № 2. P. 898. https://doi.org/10.1021/cm401803d
  23. Gao H., Shori S., Chen X. et al. // J. Colloid Interface Sci. 2013. V. 392. P. 226. https://doi.org/10.1016/j.jcis.2012.09.079
  24. Sakaki M., Feng Y.Q., Kajiyoshi K. // J. Solid State Chem. 2019. V. 277. № June. P. 253. https://doi.org/10.1016/j.jssc.2019.06.018
  25. Han Y.-S., Park I., Choy J.-H. // J. Mater. Chem. 2001. V. 11. № 4. P. 1277. https://doi.org/10.1039/b006045n
  26. Lee W.-J., Yeo H.J., Kim D.-Y. et al. // Bull. Korean Chem. Soc. 2013. V. 34. № 7. P. 2041. https://doi.org/10.5012/bkcs.2013.34.7.2041
  27. Hashemzadeh F. // Water Sci. Technol. 2016. V. 73. № 6. P. 1378. https://doi.org/10.2166/wst.2015.610
  28. Kweon S.-H., Im M., Lee W.-H. et al. // J. Mater. Chem. C. 2016. V. 4. № 1. P. 178. https://doi.org/10.1039/C5TC03815D
  29. Thangadurai V., Schmid-Beurmann P., Weppner W. // J. Solid State Chem. 2001. V. 158. № 2. P. 279. https://doi.org/10.1006/jssc.2001.9108
  30. Zahedi E., Hojamberdiev M., Bekheet M.F. // RSC Adv. 2015. V. 5. № 108. P. 88725. https://doi.org/10.1039/c5ra13763b
  31. Reddy J.R., Kurra S., Guje R. et al. // Ceram. Int. 2015. V. 41. № 2. P. 2869. https://doi.org/10.1016/j.ceramint.2014.10.109
  32. Henderson C.N. // Studies on the exfoliation, reassembly and applications of layered materials, The Pennsylvania State University, 2013.
  33. Rodionov I.A., Maksimova E.A., Pozhidaev A.Y. et al. // Front. Chem. 2019. V. 7. № December. P. 1. https://doi.org/10.3389/fchem.2019.00863
  34. Rodionov I.A., Gruzdeva E.O., Mazur A.S. et al. // Catalysts. 2022. V. 12. № 12. P. 1556. https://doi.org/10.3390/catal12121556
  35. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2023. V. 13. № 4. P. 749. https://doi.org/10.3390/catal13040749
  36. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2021. V. 11. № 11. P. 1279. https://doi.org/10.3390/catal11111279
  37. Kurnosenko S.A., Voytovich V.V., Silyukov O.I. et al. // Catalysts. 2023. V. 13. № 3. P. 614. https://doi.org/10.3390/catal13030614
  38. Zvereva I.A., Silyukov O.I., Chislov M.V. // Russ. J. Gen. Chem. 2011. V. 81. № 7. P. 1434. https://doi.org/10.1134/S1070363211070061
  39. Kurnosenko S.A., Burov A.A., Silyukov O.I. et al. // Glass. Phys. Chem. 2023. V. 49. № 2. P. 160. https://doi.org/10.1134/S1087659622600971
  40. Yafarova L.V., Silyukov O.I., Myshkovskaya T.D. et al. // J. Therm. Anal. Calorim. 2021. V. 143. № 1. P. 87. https://doi.org/10.1007/s10973-020-09276-9
  41. Jehng J.-M., Wachs I.E. // Chem. Mater. 1991. V. 3. № 7. P. 100. https://doi.org/10.1021/cm00013a025
  42. Hong Y., Kim S.-J. // Bull. Korean Chem. Soc. 1996. V. 17. № 8. P. 730.
  43. Zvereva I., Smimov Y., Gusarov V. et al. // Solid State Sci. 2003. V. 5. № 2. P. 343. https://doi.org/10.1016/S1293-2558(02)00021-3
  44. Tugova E.A. // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 874. https://doi.org/10.1134/S0036023622060237
  45. Shtarev D.S., Shtareva A.V., Petrova A.Y. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1368. https://doi.org/10.1134/S0036023622090145
  46. Shibata H., Ogura Y., Sawa Y. et al. // Biosci. Biotechnol. Biochem. 1998. V. 62. № 12. P. 2306. https://doi.org/10.1271/bbb.62.2306
  47. Nosaka Y., Nosaka A. // ACS Energy Lett. 2016. V. 1. № 2. P. 356. https://doi.org/10.1021/acsenergylett.6b00174
  48. Cui W., Liu L., Ma S. et al. // Catal. Today. 2013. V. 207. P. 44. https://doi.org/10.1016/j.cattod.2012.05.009
  49. Xiao N., Li S., Li X. et al. // Chinese J. Catal. 2020. V. 41. № 4. P. 642. https://doi.org/10.1016/S1872-2067(19)63469-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffractograms of CBN3 samples before and after their treatment with 12 M HCl and water. Impurity phases are marked with an asterisk.

Download (176KB)
3. Fig. 2. Raman spectra of CBN3 before and after treatment with 12 M HCl and water. The range 1500-4000 cm-1 has been increased by a factor of 20.

Download (154KB)
4. Fig. 3. TG curves of CBN3 before and after treatment with 12 M HCl and water.

Download (114KB)
5. Fig. 4. Diffuse reflectance spectra (a) and corresponding Kubelka-Munk plots (b) for CBN3 before and after treatment with 12 M HCl.

Download (128KB)
6. Fig. 5. Kinetic curves of photocatalytic hydrogen evolution from 1 mol% aqueous methanol under DRT-125 lamp irradiation using initial and acid-treated CBN3 samples without additional modification (a) and with 1% Pt as a co-catalyst (b).

Download (124KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».