Effect of the photonic band gap position on the photocatalytic activity of anodic titanium oxide photonic crystal

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The slowing down of the group velocity of light at the edges of the photonic band gap is one of the important optical effects observed in photonic crystals. In particular, the “slow light” effect is used in photocatalysis to increase the photocatalytic activity of semiconductors. In this work, anatase photonic crystals with different spectral positions of the photonic band gap (390–1283 nm, measured in water) were obtained. It is shown that if one of the photonic band gaps is located near the absorption edge of the semiconductor (410 nm), photonic crystal exhibits high photocatalytic activity in the photodegradation of methylene blue. At the same time, the photocatalytic activity of anatase photonic crystal increases by 30% when the photonic band gap of the third order rather than the first order is located near the absorption edge of the semiconductor.

Full Text

Restricted Access

About the authors

M. A. Belokozenko

Lomonosov Moscow State University

Email: nina@elch.chem.msu.ru
Russian Federation, Moscow 119991

N. A. Sapoletova

Lomonosov Moscow State University

Author for correspondence.
Email: nina@elch.chem.msu.ru
Russian Federation, Moscow 119991

S. E. Kushnir

Lomonosov Moscow State University

Email: nina@elch.chem.msu.ru
Russian Federation, Moscow 119991

K. S. Napolskii

Lomonosov Moscow State University

Email: nina@elch.chem.msu.ru
Russian Federation, Moscow 119991

References

  1. Goodeve C.F., Kitchener J.A. // Trans. Faraday Soc. 1938. V. 34. P. 902. https://doi.org/10.1039/TF9383400902
  2. Филимонов В.Н. // Докл. АН СССР. 1964. Т. 154. № 4. С. 922.
  3. Lim S.Y., Law C.S., Liu L. et al. // Catalysts. 2019. V. 9. № 12. P. 988. https://doi.org/10.3390/catal9120988
  4. Chen X., Shen S., Guo L. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6503. https://doi.org/10.1021/cr1001645
  5. Chen D., Cheng Y., Zhou N. et al. // J. Clean. Prod. 2020. V. 268. P. 121725. https://doi.org/10.1016/j.jclepro.2020.121725
  6. Nguyen T.P., Nguyen D.L.T., Nguyen V.-H. et al. // Nanomaterials. 2020. V. 10. № 2. P. 337. https://doi.org/10.3390/nano10020337
  7. Kaushal S., Kaur H., Kumar S. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 616. https://doi.org/10.1134/S0036023620040087
  8. Садовников А.А., Нечаев Е.Г., Бельтюков А.Н. и др. // Журн. неорган. химии. 2021. Т. 66. № 4. С. 432. [Sadovnikov A.A., Nechaev E.G., Beltiukov A.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 460. https://doi.org/10.1134/S0036023621040197]
  9. Беликов М.Л., Седнева Т.А., Локшин Э.П. // Неорган. материалы. 2021. Т. 57. № 2. С. 154. [Belikov M.L., Sedneva T.A., Lokshin E.P. // Inorg Mater 2021. V. 57. № 2. P. 146. https://doi.org/10.1134/S0020168521020023]
  10. Дорошева И.Б., Валеева А.А., Ремпель А.А. и др. // Неорган. материалы. 2021. Т.. 57. № 5. С. 528. [Dorosheva I.B., Valeeva A.A., Rempel A.A. et al. // Inorg Mater. 2021. V. 57. № 5. P. 503. https://doi.org/10.1134/S0020168521050022]
  11. Sakfali J., Ben Chaabene S., Akkari R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1324. https://doi.org/10.1134/S003602362208023X
  12. Xiao-fang Li, Feng X., Li R. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 2. P. S98. https://doi.org/10.1134/S0036023622602124
  13. Беликов М.Л., Сафарян С.А. // Неорган. материалы. 2022. Т. 58. С. 742. [Belikov M.L., Safaryan S.A. // Inorg Mater. 2022. V. 58. № 7. P. 715. https://doi.org/10.1134/S0020168522070032]
  14. Tang H., Berger H., Schmid P.E. et al. // Solid State Commun. 1993. V. 87. № 9. P. 847. https://doi.org/10.1016/0038-1098(93)90427-O
  15. Amtout A., Leonelli R. // Phys. Rev. B. 1995. V. 51. № 11. P. 6842. https://doi.org/10.1103/PhysRevB.51.6842
  16. Perović K., dela Rosa F.M., Kovačić M. et al. // Materials. 2020. V. 13. № 6. P. 1338. https://doi.org/10.3390/ma13061338
  17. Zhao D., Sheng G., Chen C. et al. // Appl. Catal., B: Environ. 2012. V. 111–112. P. 303. https://doi.org/10.1016/j.apcatb.2011.10.012
  18. Yu Y., Yu J.C., Yu J.-G. et al. // Appl. Catal. Gen. 2005. V. 289. № 2. P. 186. https://doi.org/10.1016/j.apcata.2005.04.057
  19. Lee I., Joo J.B., Yin Y. et al. // Angew. Chem. Int. Ed. 2011. V. 50. № 43. P. 10208. https://doi.org/10.1002/anie.201007660
  20. Kolesnik I.V., Chebotaeva G.S., Yashina L.V. et al. // Mendeleev Commun. 2013. V. 1. № 23. P. 11. https://doi.org/10.1016/j.mencom.2013.01.003
  21. Chen J.I.L., von Freymann G., Choi S.Y. et al. // Adv. Mater. 2006. V. 18. № 14. P. 1915. https://doi.org/ 10.1002/adma.200600588
  22. Chen S.-L., Wang A.-J., Dai C. et al. // Chem. Eng. J. 2014. V. 249. P. 48. https://doi.org/10.1016/j.cej. 2014.03.075
  23. Wang Y., Xiong D.-B., Zhang W. et al. // Catal. Today. 2016. V. 274. P. 15. https://doi.org/10.1016/j.cattod. 2016.01.052
  24. Zheng L., Dong Y., Bian H. et al. // Electrochim. Acta. 2016. V. 203. P. 257. https://doi.org/10.1016/j.electacta.2016.04.049
  25. Li Y., Liu F.-T., Chang Y. et al. // Appl. Surf. Sci. 2017. V. 426. P. 770. https://doi.org/10.1016/j.apsusc. 2017.07.258
  26. Zhou W.-M., Wang J., Wang X.-G. et al. // Phys. E: Low-Dimens. Syst. Nanostructures. 2019. V. 114. P. 113571. https://doi.org/10.1016/j.physe.2019.113571
  27. Li J.-F., Wang J., Wang X.-T. et al. // Cryst. Eng. Comm. 2020. V. 22. № 11. P. 1929. https://doi.org/10.1039/C9CE01828J
  28. Lin J., Liu K., Chen X. // Small. 2011. V. 7. № 13. P. 1784. https://doi.org/10.1002/smll.201002098
  29. Xie Y.-L., Li Z.-X., Xu H. et al. // Electrochem. Commun. 2012. V. 17. P. 34. https://doi.org/10.1016/j.elecom.2012.01.021
  30. Sapoletova N.A., Kushnir S.E., Napolskii K.S. // Electrochem. Commun. 2018. V. 91. P. 5. https://doi.org/10.1016/j.elecom.2018.04.018
  31. Sadykov A.I., Kushnir S.E., Sapoletova N.A. et al. // Scripta Mater. 2020. V. 178. P. 13. https://doi.org/ 10.1016/j.scriptamat.2019.10.044
  32. Curti M., Schneider J., Bahnemann D.W. et al. // J. Phys. Chem. Lett. 2015. V. 6. № 19. P. 3903. https://doi.org/ 10.1021/acs.jpclett.5b01353
  33. Zhou X., Liu N., Schmuki P. // ACS Catal. 2017. V. 7. № 5. P. 3210. https://doi.org/10.1021/acscatal.6b03709
  34. Chen J.I.L., Freymann G. von, Choi S.Y. et al. // J. Mater. Chem. 2008. V. 18. № 4. P. 369. https://doi.org/10.1039/B708474A
  35. Joannopoulos J.D., Johnson S.G., Winn J.N. et al. // Photonic crystals: molding the flow of light. Woodstock: Princeton University Press, 2008.
  36. Waterhouse G.I.N., Wahab A.K., Al-Oufi M. et al. // Sci. Rep. 2013. V. 3. № 1. P. 2849. https://doi.org/10.1038/srep02849
  37. Wu M., Jin J., Liu J. et al. // J. Mater. Chem. A. 2013. V. 1. № 48. P. 15491. https://doi.org/10.1039/C3TA13574H
  38. Sapoletova N.A., Kushnir S.E., Napolskii K.S. // Nanotechnology. 2022. V. 33. № 6. P. 065602. https://doi.org/ 10.1088/1361-6528/ac345c
  39. Mote V., Purushotham Y., Dole B. // J. Theor. Appl. Phys. 2012. V. 6. № 1. P. 6. https://doi.org/10.1186/2251-7235-6-6
  40. Zhang J., Li S., Ding H. et al. // J. Power Sources. 2014. V. 247. P. 807. https://doi.org/10.1016/j.jpowsour. 2013.08.124
  41. Саполетова Н.А., Кушнир С.Е., Черепанова Ю.М. и др. // Неорган. материалы 2022. Т. 58. № 1. С. 44. [Sapoletova N.A., Kushnir S.E., Cherepanova Yu.M. et al. // Inorg. Mater. 2022. V. 58. № 1. P. 40. https://doi.org/10.1134/S0020168522010101]
  42. Булдаков Д.А., Петухов Д.И., Колесник И.В. и др. // Росс. нанотехн. 2009. Т. 4. № 5–6. С. 58. [Buldakov D.A., Petukhov D.I., Kolesnik I.V. et al. // Nanotechnol Russia. 2009. V. 4. № 5. P. 296. https://doi.org/10.1134/S1995078009050061]
  43. Su Z., Zhou W. // J. Mater. Chem. 2009. V. 19. № 16. P. 2301. https://doi.org/10.1039/B820504C
  44. Roslyakov I.V., Kolesnik I.V., Levin E.E. et al. // Surf. Coat. Technol. 2020. V. 381. P. 125159. https://doi.org/ 10.1016/j.surfcoat.2019.125159
  45. Уханов Ю.И. // Оптические свойства полупроводников. М.: Наука, 1977.
  46. Joshi G.P., Saxena N.S., Mangal R. et al. // Bull. Mater. Sci. 2003. V. 26. № 4. P. 387. https://doi.org/10.1007/BF02711181

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the applied voltage (U) and the recorded current density (j) on the charge density (a) and anodization time (b) during the synthesis of the S857 sample.

Download (1MB)
3. Fig. 2. X-ray diffraction pattern of an annealed sample S1065 on a titanium substrate. The lower part of the figure shows the positions and relative intensities of the titanium [44–1294] and anatase [21–1272] reflections from the ICDD PDF2 database.

Download (475KB)
4. Fig. 3. Transmission spectrum of an annealed NT sample (a) and the same, reconstructed in Tauc coordinates for an indirect gap semiconductor (b).

Download (513KB)
5. Fig. 4. SEM images of the upper surface (a), transverse cleavage (b) and lower surface (c) of the annealed sample S857. Solid and dotted arrows indicate parts of the AOT film formed at an alternating voltage of 50–70 V and a constant voltage of 50 V, respectively.

Download (2MB)
6. Fig. 5. Total reflection spectra of annealed AOT-based PCs with pores filled with water. Above the reflection maxima corresponding to the FZZ, the codes of the PC samples are indicated.

Download (524KB)
7. Fig. 6. Kinetic curves of the photodecomposition of methylene blue under the influence of UV radiation (365 nm) in the presence of annealed PCs based on AOT with different PBG positions (390–1283 nm), as well as an annealed NT sample obtained at a constant voltage of 60 V. As a blank The sample was aluminum foil.

Download (925KB)
8. Fig. 7. Dependence of the reaction rate constant (k) of the photodecomposition of methylene blue on the position of the maximum of the photocatalyst's photocatalyst when exposed to UV radiation (365 nm). Filled and unfilled figures indicate the position of the first- and third-order FZZ, respectively. The horizontal dotted line indicates the k value calculated for the NT sample obtained at a constant voltage of 60 V. The vertical dotted line indicates the experimental value of the anatase band gap (Eg = 3.02 eV, which is equivalent to a wavelength of 410 nm).

Download (617KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies