The electrical properties of codoping LaInO3 perovskite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper is devoted to the study of LaInO3 based co-doped materials. Solid solutions in which lanthanum is substituted for strontium have sufficiently high conductivity values, but a low level of oxygen deficiency is realized. Mg2+ and Ca2+ ions were chosen as co-dopants for the B sublattice. Both series of the investigated La0.9Sr0.1In1-xCaxO2.95–0.5x and La0.9Sr0.1In1-yMgyO2.95-0.5y solid solutions crystallize in orthorhombic symmetry with sp. gr. Pnma. The ionic conductivity in a dry atmosphere is determined by the oxygen ions transport. Oxygen-ion transfer in solid solutions is ~30–40% at high temperatures (T > 700°C) and increases to >80% as the temperature decreases to 400–300°C. The substitution Ca2+ with In3+ increases the electrical conductivity of the oxygen ions; the highest values are achieved for the compositions La0.9Sr0.1In0.95Ca0.05O2.925 and La0.9Sr0.1In0.9Ca0.1O2.9. The introduction of Mg2+ co-dopant at the In3+ positions leads to a decrease in ionic conductivity compared to La0.9Sr0.1InO2.95. The effects of changing oxygen mobility with changing geometric factors (cell volume, critical radius) are discussed.

Full Text

Restricted Access

About the authors

K. G. Belova

Institute of High Temperature Electrochemistry, UB RAS; Ural Federal University named after the first President of Russia, B. N. Yeltsin

Email: OAV-hn@yandex.ru
Russian Federation, Yekaterinburg, 620002; Yekaterinburg, 620002

А. V. Egorova

Institute of High Temperature Electrochemistry, UB RAS; Ural Federal University named after the first President of Russia, B. N. Yeltsin

Author for correspondence.
Email: OAV-hn@yandex.ru
Russian Federation, Yekaterinburg, 620002; Yekaterinburg, 620002

S. P. Pachina

Ural Federal University named after the first President of Russia, B. N. Yeltsin

Email: OAV-hn@yandex.ru
Russian Federation, Yekaterinburg, 620002

N. А. Tarasova

Institute of High Temperature Electrochemistry, UB RAS; Ural Federal University named after the first President of Russia, B. N. Yeltsin

Email: OAV-hn@yandex.ru
Russian Federation, Yekaterinburg, 620002; Yekaterinburg, 620002

I. Е. Animitsa

Institute of High Temperature Electrochemistry, UB RAS; Ural Federal University named after the first President of Russia, B. N. Yeltsin

Email: OAV-hn@yandex.ru
Russian Federation, Yekaterinburg, 620002; Yekaterinburg, 620002

References

  1. Buonomano A., Barone G., Forzano C. // Energy Rep. 2022. V. 8. P. 4844. https://doi.org/10.1016/j.egyr.2022.03.171
  2. Kumar S.S., Lim H. // Energy Rep. 2022. V. 8. P. 13793. https://doi.org/10.1016/j.egyr.2022.10.127
  3. Scovell M.D. // Int. J. Hydrogen Energy. 2022. V. 47. P. 10441. https://doi.org/10.1016/j.ijhydene.2022.01.099
  4. Corigliano O., Pagnotta L., Fragiacomo P. // Sustainability. 2022. V. 14. P. 15276. https://doi.org/10.3390/su142215276
  5. Klyndyuk A.I., Zhuravleva Ya.Yu. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2084. https://doi.org/10.1134/S0036023622601404
  6. Pişkin F. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1239. https://doi.org/10.1134/S0036023622080216
  7. Filonova E., Medvedev D. // Nanomaterials. 2022. V. 12. P. 1991. https://doi.org/10.3390/nano12121991
  8. Chen Z., Jiang Q., Cheng F. et al. // J. Mater. Chem. A. 2019. V. 7. P. 6099. https://doi.org/10.1039/C8TA11957K
  9. Stroeva A.Y., Gorelov V.P., Balakireva V.B. // Russ. J. Electrochem. 2010. V. 46. P. 552. https://doi.org/ 10.1134/S1023193510070116
  10. Kuz’min A.V., Stroeva A.Yu., Gorelov V.P. // Russ. J. Electrochem. V. 54. P. 43. https://doi.org/10.1134/S1023193518010056
  11. Egorova A.V., Belova K.G., Animitsa I.E. // Int. J. Hydrogen Energy. 2023. V. 48. P. 22685. https://doi.org/10.1016/j.ijhydene.2023.03.263
  12. Gambino M., Tommaso S.D., Giannici F. et al. // J. Chem. Phys. 2017. V. 147. P. 144702. https://doi.org/ 10.1063/1.4993705
  13. Kim H.-L., Kim S., Lee K.-H. et al. // J. Power Sources. 2014. V. 267. P. 723. https://doi.org/https://doi.org/ 10.1016/j.jpowsour.2014.06.006
  14. Dhanasekaran P., Gupta N.M. // Mater. Res. Bull. 2012. V. 47. P. 1217. https://doi.org/10.1016/j.materresbull.2012.01.031
  15. Sood K., Singh K., Pandey O.P. // Physica B. 2015. V. 456. P. 250. https://doi.org/10.1016/j.physb. 2014.08.036
  16. Sood K., Singh K., Basu S. et al. // Ionics. 2015. V. 21. P. 2839. https://doi.org/10.1007/s11581-015-1461-8
  17. He H., Huang X., Chen L. // Solid State Ionics. 2000. V. 130. P. 183. https://doi.org/10.1016/S0167-2738 (00)00666-4
  18. He H., Huang X., Chen L. // Electrochim. Acta. 2001. V. 46. P. 2871. https://doi.org/10.1016/S0013-4686 (01)00508-4
  19. Bakiz B., Guinneton F., Arab M. et al. // Adv. Mater. Sci. Eng. 2010. V. 2010. P. 360597. https://doi.org/ 10.1155/2010/360597
  20. Shannon R.D. // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  21. Nishiyama S., Kimura M., Hattori T. // Key Eng. Mater. 2001. V. 216. P. 65. https://doi.org/10.4028/www.scientific.net/KEM.216.65
  22. Smyth D.M. // Solid State Ionics. 2000. V. 129. P. 5. https://doi.org/10.1016/S0167-2738(99)00312-4
  23. Lany S., Zunger A. // Phys. Rev. B. 2009. V. 80. P. 085202. https://doi.org/10.1103/PhysRevB.80.085202
  24. Dong Ya., Huang Yi., Ding D. et al. // Acta Mater. 2021. V. 203. P. 116487. https://doi.org/10.1016/j.actamat.2020.116487
  25. Kilner J.A., Brook R.J. // Solid State Ionics. 1982. V. 6. P. 237. https://doi.org/10.1016/0167-2738(82)90045-5
  26. Sammells A.F., Cook R.L., White J.H. et al. // Solid State Ionics. 1992. V. 52. P. 111.
  27. Tantardini Chr., Oganov A.R. // Nature Commun. 2021. V. 12. P. 2087. https://doi.org/10.1038/s41467-021-22429-0
  28. Воронов В.Н. Ионная подвижность и свойства соединений ABX3 типа перовскита. Красноярск, 2006. 64 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction pattern of the La0.9Sr0.1In0.9Ca0.1O2.9 sample, refined by the Le Bail method, and the change in cell volume depending on the dopant content (inset).

Download (991KB)
3. Fig. 2. Impedance hodographs for the La0.9Sr0.1InO2.95 solid solution at different temperatures and the equivalent circuit used for processing.

Download (787KB)
4. Fig. 3. Temperature dependences of the total electrical conductivity for (a) La0.9Sr0.1In1–yMgyO2.95–0.5y and (b) La0.9Sr0.1In1–xCaxO2.95–0.5 solid solutions.

Download (949KB)
5. Fig. 4. Dependence of the total electrical conductivity of the La0.9Sr0.1In0.95Mg0.05O2.925 sample on the partial pressure of oxygen at different temperatures (a) and the temperature dependences of the total (1), oxygen-ion (2) and hole (3) conductivity for La0. 9Sr0.1In0.95Mg0.05O2.925 (pO2 = 0.21 atm) (b).

Download (870KB)
6. Fig. 5. Temperature dependences of ionic transport numbers for La0.9Sr0.1In1–yMgyO2.95–0.5y (a) and (b) La0.9Sr0.1In1–xCaxO2.95–0.5x solid solutions.

Download (747KB)
7. Fig. 6. Temperature dependences of oxygen-ion electrical conductivity for solid solutions La0.9Sr0.1In1–yMgyO2.95–0.5y (a) and La0.9Sr0.1In1–xCaxO2.95–0.5x (b).

Download (1MB)
8. Fig. 7. Concentration dependences of total (a) and oxygen-ion (b) conductivity and their activation energies at a temperature of 700°C for La0.9Sr0.1In1–yMgyO2.95–0.5y solid solutions.

Download (463KB)
9. Fig. 8. Concentration dependences of total (a) and oxygen-ionic (b) conductivity and their activation energies at a temperature of 700°C for La0.9Sr0.1In1–xCaxO2.95–0.5x solid solutions.

Download (536KB)
10. Fig. 9. Concentration dependences of oxygen mobility and ionic transport numbers for La0.9Sr0.1In1–yMgyO2.95–0.5y (a) and La0.9Sr0.1In1–xCaxO2.95–0.5x (b) solid solutions at a temperature of 700°C.

Download (399KB)
11. Fig. 10. Change in the critical radius depending on the dopant content.

Download (422KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies