Determination of the transition of eutectic to peritectic folding in the Cu(Ni)–Fe–S system by the method of directional crystallization of the melt

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Theoretical analysis of the process of quasi-equilibrium directed crystallization of a three-component melt is carried out in this paper. The change in the composition of phases at each of the sample sites and the phase composition transformation for different types of phase reactions are considered. It is shown that at directional crystallization there are possible cases of transition of eutectic reaction to peritectic reaction at lowering of temperature. The directional crystallization of Fe 29.96, Cu 21.55, Ni 2.01, S 46.49 at. % melt was carried out. Since nickel was present in the ingot in the form of impurities dissolved in the phases of the Cu-Fe-S system, it is possible to consider the behavior of the melt belonging to this three-component system when interpreting the data. As a result of which a sample with three zones has been obtained: single-phase from FezSd (Poss), two-phase from eutectic mixture of Poss and (Cu,Fe)1+xS (Iss) and single-phase from Iss. During the transition from one zone to the next, the average composition of the solid phase changes discontinuously, while the compositions of the melt and solid solutions present in neighbouring zones change continuously. These results are consistent with theoretical representations.

Full Text

Restricted Access

About the authors

E. F. Sinyakova

Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: efsin@igm.nsc.ru
Novosibirsk

I. G. Vasilieva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: efsin@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Федоров П.П. // Журн. физ. химии. 1999. Т. 73. № 9. С. 1545.
  2. Федоров П.П. // Журн. неорган. химии. 2021. T. 66. № 4. C. 510. [Fedorov P.P. // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 550. https://doi.org/10.31857/S0044457X21040103
  3. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями / Отв. ред. Кузнецов Ф. А. Новосибирск: ИНХ СО РАН, 2004. 382 с.
  4. Простакова В.А., Ломако М.О., Восков А.Л. и др. // Вестник МГУ. Сер. Хим. 2010. Т. 2. № 51. С. 81.
  5. Восков А.Л., Коваленко Н.А., Куценок И.Б., Успенская И.А. // Журн. физ. химии. 2019. Т. 93. № 10. С. 1445.
  6. Луцык В.И. Анализ поверхности ликвидуса тройных систем / Отв. ред. Мохосоев М.В. М.: Наука, 1987. 150 с.
  7. Воробьева В.П., Луцык В.И., Парфенова М.Д. // Журн. неорган. химии. 2023. T. 68. № 1. C. 77. https://doi.org/10.31857/S0044457X22600852
  8. Луцык В.И., Воробьева В.П., Сумкина О.Г. // Журн. неорган. химии. 2000. Т. 45. № 5. С. 861.
  9. Косяков В.И., Синякова Е.Ф. // Журн. неорган. химии. 2017. Т. 62. № 5. С. 577.
  10. Косяков В.И., Шестаков В.А. // Журн. неорган. химии. 2017. Т. 62. № 3. С. 314. [Kosyakov V.I., Shestakov V.A. // Rus. J. Inorg. Chem. 2017. V. 62. No. 6. P. 795. https://doi.org/10.7868/S0044457X17060125]
  11. Косяков В.И., Шестаков В.А., Грачев Е.В. // Журн. физ. химии. 2019. Т. 93. № 11. С. 1652.
  12. Косяков В.И. // Журн. физ. химии. 2019. Т. 93. № 9. C. 1283.
  13. Шестаков В.А., Косяков В.И., Грачев Е.В. // Журн. физ. химии. 2020. Т. 94. № 6. С. 807.
  14. Шестаков В.А., Косяков В.И. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 377.
  15. Шестаков В.А., Грачев Е.В. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 492.
  16. Косяков В.И., Буждан Я.М., Шестаков В.А. Сб. Неформальные математические модели в химической термодинамике. Новосибирск: Наука, 1991. С. 130.
  17. Косяков В.И. // Сибирский хим. журнал. 1993. Вып. 3. С. 56.
  18. Косяков В.И. // Геология и геофизика. 1998. Т. 39. № 9. С. 66.
  19. Косяков В.И., Синякова Е.Ф. // Журн. неорган. химии. 2004. Т. 49. № 7. С. 1170.
  20. Косяков В.И., Синякова Е.Ф. // Журн. неорган. химии. 2011. Т. 56. № 5. С. 830.
  21. Косяков В.И., Синякова Е.Ф. // Неорган. материалы. 2011. Т. 47. № 6. С. 738.
  22. Kosyakov V.I., Sinyakova E.F. // J. Therm. Anal. Calorim. 2014. V. 115. № 1. P. 511. https://doi.org/10.1007/s10973-013-3206-0
  23. Sinyakova E.F., Kosyakov V.I. // J. Therm. Anal. Calorim. 2014. V. 117. № 3. P. 1085. https://doi.org/10.1007/s10973-017-6215-6
  24. Kosyakov V.I., Sinyakova E.F. // J. Therm. Anal. Calorim. 2017. V. 129. № 2. P. 623. https://doi.org/10.1007/s10973-017-6215-6
  25. Синякова Е.Ф., Косяков В.И., Кох К.А., Наумов Е.А. // Геология и геофизика. 2019. Т. 60. № 11. С. 1577.
  26. Kosyakov V.I., Sinyakova E.F., Kokh K.A. // J. Therm. Anal. Calorim. 2020. V. 139. № 6. P. 3377. https://doi.org/10.1007/s10973-019-08701-y
  27. Рябчиков И.Д. Термодинамический анализ поведения малых элементов при кристаллизации силикатных расплавов. М.: Наука, 1965.120 с.
  28. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1978. 504 с.
  29. Элерс Э. Интерпретация фазовых диаграмм в геологии. М.: Мир, 1975. 300 с.
  30. Петров Д.А. Тройные системы. М.: Наука, 1953. 128 с.
  31. Косяков В.И., Синякова Е.Ф. // Геология и геофизика. 2012. Т. 53. № 9. С. 1126.
  32. Косяков В.И., Синякова Е.Ф. // Геохимия. 2005. № 4. С. 415.
  33. Алабужев Б.А. // Экспериментальные исследования по минералогии (1968–1969 гг.). Новосибирск: Изд-во Ин-та геологии и геофизики, 1969. C. 168.
  34. Лаврентьев Ю.Г., Карманов Н.С., Усова Л.В. // Геология и геофизика. 2015. Т. 56. № 8. С. 1473.
  35. Schlegel H., Sehüller A. // Z. Metallkd. 1952. Bd. 43. № 12. P. 421.
  36. Greig J.W., Jensen E., Merwin H.E. // Carnegie Inst. Wash. Year Book. 1955. V. 54. P. 129.
  37. Косяков В.И. // Журн. неорган. химии. 2008. Т. 53. № 6. C. 1020.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relative location of the monovariant line and the conode triangle during monovariant eutectic (a) and peritectic (b) reactions, c – transition of the eutectic reaction (melt composition L1) to peritectic (L3) through the transition point (L2). Phases  and  of constant composition are in equilibrium with the melt. The arrows show the direction of the temperature decrease. Single and double arrows indicate eutectic and peritectic folds.

Download (677KB)
3. Fig. 2. Trajectory of the melt composition (dashed line) during directional crystallization of sample L0 when it hits the peritectic (a) and eutectic (b) folds separating the regions of primary crystallization of phases  and .

Download (350KB)
4. Fig. 3. Monovariant line with transition point L on the line between the regions of primary crystallization of phases  and  and the trajectory of the melt composition during directional crystallization; a - peritectic fold transforms into eutectic, b - eutectic fold transforms into peritectic.

Download (497KB)
5. Fig. 4. Scheme of the primary zoning of the sample (a) and its microstructure in reflected light (b) and reflected electrons (c). Phases formed from the melt: Poss—pyrrhotite solid solution FezS1±, Iss—intermediate solid solution (Cu,Fe)1+xS. Phases formed during subsolidus reactions: Poss ′ - low-temperature pyrrhotite solid solution, Iss ′ - low-temperature intermediate solid solution, Cbn - cubanite CuFe2S3, Pn - pentlandite (Fe, Ni)9S8, Bn - bornite Cu5FeS4, Hc - heycockite Fe5Cu4S8. Black—cracks in the sample.

Download (2MB)
6. Fig. 5. Change in the concentration of copper, iron and sulfur in the sulfide melt (L) and solid phases (Poss, Iss) in three zones of the sample to g = 0.65. Open circles show the average concentrations of components in the melt, closed circles - in solid phases. The dashed horizontal line shows the concentration of the component in the initial melt, the dashed vertical lines separate the Poss || zones. Poss + Iss || Iss.

Download (776KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies