Coordination reaction of manganese(III)porphyrins with pyridine as model to obtain the donor-acceptor dyads with fullerene acceptors

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In connection with the use of the pyridyl group as the bridge in the coordination of metalloporphyrins with fullerene acceptors to obtain the photoinduced electron transfer donor-acceptor systems, the study of coordination of unsubstituted pyridine molecules and the determination of the chemical structure, spectral properties, and stability of the obtained complexes becomes relevant. The coordination of pyridine molecules by manganese(III)porphyrins depending on their structure was studied in this work. In all cases, coordination ends with the formation of 1 : 1 complexes in toluene, the structure of which was established using the data of MALDI-TOF mass spectrometry and 1H NMR spectroscopy. The numerical values of the stability constants of the coordination complexes were determined; they change from 0.16 to 104 L/mol depending on the nature of the axial anion in the manganese(III)porphyrin, the structure of the tetrapyrrole macrocycle, and the functional substitution in it. The obtained data facilitate the choice of structures in the creation of hybrid materials based on metalloporphyrins by the immobilization and supramolecular chemistry methods.

全文:

受限制的访问

作者简介

E. Ovchenkova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: enk@isc-ras.ru
俄罗斯联邦, Ivanovo 153045

A. Elkhovikova

Ivanovo State University of Chemical Technology

Email: enk@isc-ras.ru
俄罗斯联邦, Ivanovo, 153000

T. Lomova

Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: enk@isc-ras.ru
俄罗斯联邦, Ivanovo 153045

参考

  1. Meireles A.M., Guimarães A.S., Querino G.R. et al. // Appl. Organomet. Chem. 2021. V. 35. № 11. P. e6400. https://doi.org/10.1002/aoc.6400
  2. Gou F., Bian Q., Pan H. et al. // J. Mol. Struct. 2023. V. 1281. P. 135116. https://doi.org/10.1016/j.molstruc.2023.135116
  3. Jokazi M., Mpeta L.S., Nyokong T. // J. Electroanal. Chem. 2021. V. 901. P. 115748. https://doi.org/10.1016/j.jelechem.2021.115748
  4. Lomova T., Tsaplev Y., Klyueva M. et al. // J. Organomet. Chem. 2021. V. 945. P. 121880. https://doi.org/10.1016/j.jorganchem.2021.121880.
  5. Žiniauskaitė A., Ragauskas S., Ghosh A.K. et al. // Ocul. Surf. 2019. V. 17. № 2. P. 257. https://doi.org/10.1016/j.jtos.2019.02.006.
  6. Zheng Y., Yuan Y., Chai Y. et al. // Biosens. Bioelectron. 2015. V. 66. P. 585. https://doi.org/10.1016/j.bios.2014.12.022.
  7. Lu H.-S., Wang M.-Y., Ying F.-P. et al. // Bioorg. Med. Chem. 2021. V. 35. P. 116090. https://doi.org/10.1016/j.bmc.2021.116090
  8. Karimipour G., Kowkabi S., Naghiha A. // Braz. Arch. Biol. Technol. 2015. V. 58. P. 431. https://doi.org/10.1590/S1516-8913201500024
  9. Yu K.G., Li D.H., Zhou C.H. et al. // Chine. Chem. Lett. 2009. V. 20. № 4. P. 411. https://doi.org/10.1016/j.cclet.2008.11.030
  10. Ashcraft K.A., Boss M.-K., Tovmasyan A. et al. // Int. J. Radiat. Oncol. Biol. Phys. 2015. V. 93. № 4. P. 892. https://doi.org/10.1016/j.ijrobp.2015.07.2283
  11. Weitzel D.H., Tovmasyan A., Ashcraft K.A. et al. // Mol. Cancer Ther. 2015. V. 14. № 1. P. 70. https://doi.org/10.1158/1535-7163.MCT-14-0343.
  12. Ezhov A.V., Aleksandrov A.E., Zhdanova K.A. et al. // Synth. Met. 2020. V. 269. P. 116567. https://doi.org/10.1016/j.synthmet.2020.116567.
  13. Fu B., Che Y., Yuan X. et al. // Dyes and Pigments. 2021. V. 196. P. 109754. https://doi.org/10.1016/j.dyepig.2021.109754
  14. Gacka E., Burdzinski G., Marciniak B. et al. // Phys. Chem. Chem. Phys. 2020. V. 22. № 24. P. 13456. https://doi.org/10.1039/D0CP02545C
  15. Malyasova A.S., Smirnova P.N., Koifman O.I. // Russ. J. Inorg. Chem. 2022. V. 67. № 3. P. 388. https://doi.org/10.1134/S0036023622030093 [Малясова А.С., Смирнова П.Н., Койфман О.И. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 409. https://doi.org/ 10.31857/S0044457X22030096]
  16. Chitta R., Badgurjar D., Reddy G. et al. // J. Porphyrins Phthalocyanines. 2021. V. 25. № 5–6. P. 469. https://doi.org/10.1142/S1088424621500395
  17. Janczak J. // Polyhedron. 2020. V. 178. P. 114313. https://doi.org/10.1016/j.poly.2019.114313
  18. Li Y., Wang G., Feng X. et al. // J. Mol. Struct. 2021. V. 1242. P. 130819. https://doi.org/10.1016/j.molstruc.2021.130819
  19. Nene L.C., Managa M.E., Oluwole D.O. et al. // Inorg. Chim. Acta. 2019. V. 488. P. 304. https://doi.org/10.1016/j.ica.2019.01.012
  20. Amati A., Cavigli P., Kahnt A. et al. // J. Phys. Chem. A. 2017. V. 121. № 22. P. 4242. https://doi.org/10.1021/acs.jpca.7b02973
  21. Amiri N., Taheur F.B., Chevreux S. et al. // Tetrahedron. 2017. V. 73. № 50. P. 7011. https://doi.org/10.1016/j.tet.2017.10.029
  22. Bichan N.G., Ovchenkova E.N., Ksenofontov A.A. et al. // J. Mol. Liq. 2021. V. 326. P. 115306. https://doi.org/ 10.1016/j.molliq.2021.115306
  23. Birin K.P., Abdulaeva I.A., Polivanovskaya D.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 193. https://doi.org/10.1134/S0036023621020029 [Бирин К.П., Абдулаева И.А., Поливановская Д.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 194. https://doi.org/10.31857/S0044457X21020021]
  24. Znoiko S.A., Kustova T.V., Pavlova E.I. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 2. P. 190. https://doi.org/10.1134/S1070363221020067 [Знойко С.А., Кустова Т.В., Павлова Е.И. и др. // Журн. общ. химии. 2021. Т. 91. № 2. С. 231. https://doi.org/10.31857/S0044460X21020062]
  25. Ovchenkova E.N., Bichan N.G., Kudryakova N.O. et al. // Dyes and Pigments. 2018. V. 153. P. 225. https://doi.org/10.1016/j.dyepig.2018.02.023
  26. Ovchenkova E.N., Klyueva M.E., Lomova T.N. // Russ. J. Inorg. Chem. 2017. V. 62. № 11. P. 1483. http://doi.org/10.1134/S0036023617110134 [Овченкова Е.Н., Клюева М.Е., Ломова Т.Н. // Журн. неорган. химии. 2017. Т. 62. № 11. С. 1490].
  27. Wang H., Fan Z., Cao T. et al. // J. Alloys Compd. 2021. V. 887. P. 161462. https://doi.org/10.1016/j.jallcom.2021.161462
  28. Li X., Li K., Wang D. et al. // J. Porphyrins Phthalocyanines. 2017. V. 21. № 3. P. 179. https://doi.org/10.1142/S1088424616501236
  29. Lahanas N., Kucheryavy P., Lalancette R.A. et al. // Acta Crystallogr., Sect. C. 2019. V. 75. № 3. P. 304. https://doi.org/10.1107/S2053229619001232
  30. Kadish K., Smith K., Guilard R. // In The Porphyrin Handbook: Biochemistry and Binding: Activation of Small Molecules. New York: Academic Press. 1999. V. 4.
  31. Adler A.D., Longo F.R., Kampas F. et al. // J. Inorg. Nucl. Chem. 1970. V. 32. № 7. P. 2443. https://doi.org/10.1016/0022-1902(70)80535-8
  32. Ovchenkova E.N., Hanack M., Lomova T.N. // Macroheterocycles. 2010. V. 3. № 1. P. 63. https://doi.org/10.6060/mhc2010.1.63
  33. Ovchenkova E.N., Bichan N.G., Lomova T.N. // Tetrahedron. 2015. V. 71. № 38. P. 6659. https://doi.org/10.1016/j.tet.2015.07.054
  34. Lomova T.N., Berezin B.D. // Russ. J. Coord. Chem. 2001. V. 27. № 2. P. 85. https://doi.org/10.1023/A:1009523115380 [Ломова Т.Н., Березин Б.Д. // Коорд. химия. 2001. Т. 27. № 2. С. 96]
  35. Клюева М.Е. // Дис. … докт. хим. наук. М., 2006.
  36. Turner P., Gunter M.J. // Inorg. Chem. 1994. V. 33. № 7. P. 1406. https://doi.org/10.1021/ic00085a032
  37. Ikezaki A., Nakamura M. // J. Porphyrins Phthalocyanines. 2016. V. 20. № 1–4. P. 318. https://doi.org/10.1142/S1088424616500085.
  38. Ikezaki A., Nakamura M. // Chem. Lett. 2005. V. 34. № 7. P. 1046. https://doi.org/10.1246/cl.2005.1046
  39. Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organomet. 2010. V. 29. № 9. P. 2176. https://doi.org/10.1021/om100106e
  40. Ovchenkova E.N., Bichan N.G., Lyubimtsev A.V. et al. // Russ. J. Gen. Chem. 2018. V. 88. № 8. P. 1657. https://doi.org/10.1134/S1070363218080170. [Овченкова Е.Н., Бичан Н.Г., Любимцев А.В. и др. // Журн. общ. химии. 2018. Т. 88. № 8. С. 1337.]
  41. Аскаров К.А., Березин Б.Д., Евстигнеева Р.П. и др. // Под ред. Ениколопяна Н.С. М.: Наука, 1985. 333 с.
  42. Lomova T. // Appl. Organomet. Chem. 2021. V. 35. № 8. P. e6254. https://doi.org/10.1002/aoc.6254
  43. Ovchenkova E.N., Bichan N.G., Lomova T.N. // Russ. J. Phys. Chem. 2019. V. 93. № 2. P. 236. https://doi.org/10.1134/S0036024419010217 [Овченкова Е.Н., Бичан Н.Г., Ломова Т.Н. и др. // Журн. физ. химии. 2019. Т. 93. № 2. С. 213.]
  44. Lomova T.N., Zaitseva S.V., Molodkina O.V. et al. // Russ. J. Coord. Chem. 1999. V. 25. № 6. P. 397. [Ломова Т.Н., Зайцева С.В., Молодкина О.В. и др. // Коорд. химия. 1999. V. 25. № 6. P. 424.]
  45. Kadish K.M., Bottomley L.A., Beroiz D. // Inorg. Chem. 1978. V. 17. № 5. P. 1124. https://doi.org/10.1021/ic50183a006
  46. Walker F.A. // J. Am. Chem. Soc. 1973. V. 95. № 4. P. 1150. https://doi.org/10.1021/ja00785a025
  47. Lin X.Q., Boisselier-Cocolios B., Kadish K.M. // Inorg. Chem. 1986. V. 25. № 18. P. 3242. https://doi.org/10.1021/ic00238a030
  48. Ovchenkova E.N., Bichan N.G., Semeikin A.S. et al. // Macroheterocycles. 2018. V. 11. № 1. P. 79. https://doi.org/10.6060/mhc170301o

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structural formulas and electronic spectra in toluene (AcO)MnTPP/(AcO)MnTtBuPP (1) and (AcO)MnTAP(4-tBuPh)8 (2).

下载 (630KB)
3. Fig. 2. Change in ESP in toluene (AcO)MnTtBuPP (a) and (AcO)MnTAP(4-tBuPh)8 (b) with the development of Py from 0 to 10 mol/l.

下载 (139KB)
4. Fig. 3. Dependences of log I on log CPy for the mode (AcO)MnTPP (1, tg = 1.03, R2 = 0.98), (AcO)MnTtBuPP (2, tg = 1.03, R2 = 0.98 ) and (AcO)MnTAP(4 -tBuPh)8 (3, tan = 0.96, R2 = 0.99) with Py in toluene at 298 K.

下载 (161KB)
5. Fig. 4. MALDI-TOF mass spectrum of (AcO)(Py)MnTPP.

下载 (59KB)
6. Fig. 5. 1H NMR spectra of (AcO)MnTtBuPP (a) and (AcO)(Py)MnTtBuPP (b) in CDCl3.

下载 (226KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##