Low-temperature one-pot synthesis of tin(II) sulfide nanocrystalline thin films

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Photosensitive thin films of tin (II) sulfide with p-type conductivity and a band gap of 1.03 ± 0.09 eV have been obtained within the framework of the principles of «green chemistry» using the one-pot approach. In order to expand the range of sulfidizers used in the technology of deposition of thin nanostructured SnS films by chemical deposition, the efficiency of using sodium thiosulfate solutions is shown. It has been found that thin SnS films with good adhesion to a dielectric substrate and a size of coherent scattering regions of about 30 nm can be obtained as a result of a chemical reaction of the hydrolytic decomposition of thiosulfate ions. The conditions for obtaining SnS are substantiated by the thermodynamic analysis of ionic equilibria. Quantum-chemical calculations show that the p-type conductivity of the synthesized SnS films is most likely due to tin vacancies.

Full Text

Restricted Access

About the authors

N. S. Kozhevnikova

Institute of Solid State Chemistry UB RAS; Ural Federal University

Author for correspondence.
Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

L. N. Maskaeva

Ural Federal University; Ural Institute of State Fire Service of EMERCOM of Russia

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

A. N. Enyashin

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

O. A. Lipina

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

A. P. Tyutyunnik

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

I. O. Selyanin

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

I. V. Baklanova

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

M. V. Kuznetsov

Institute of Solid State Chemistry UB RAS

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg

V. F. Markov

Ural Federal University; Ural Institute of State Fire Service of EMERCOM of Russia

Email: kozhevnikova@ihim.uran.ru
Russian Federation, Ekaterinburg; Ekaterinburg

References

  1. Brent J.R., Lewis D.J., Lorenz T. et al. // J. Am. Chem. Soc. 2015. V. 137. № 39. P. 12689. https://doi.org/10.1021/jacs.5b08236
  2. Banai R.E., Horn M.W., Brownson J.R.S. // Sol. Energy Mater. Sol. Cells. 2016. V. 150. P. 112. http://dx.doi.org/10.1016/j.solmat.2015.12.001
  3. Reddy K.T.R., Reddy N.K., Miles R.W. // Sol. Energy Mater. Sol. Cells. 2006. V. 90. № 18–19. P. 3041. https://doi.org/10.1016/j.solmat.2006.06.012
  4. Mathews N.R., Anaya H.B.M., Cortes-Jacome M.A. et al. // J. Electrochem. Soc. 2010. V. 157. № 3. P. H337. https://doi.org/10.1149/1.3289318
  5. Bashkirov S.A., Gremenok V.F., Ivanov V.A. et al. // Thin Solid Films. 2012. V. 520. P. 5807. https://doi.org/10.1016/j.tsf.2012.04.030
  6. Kabouche S., Bellal B., Louafi Y. et al. // Mater. Chem. Phys. 2017. V. 195. P. 229. https://doi.org/10.1016/j.matchemphys.2017.04.031
  7. Gao W., Wu C., Cao M. et al. // J. Alloys Compd. 2016. V. 688. Part A. P. 668. https://doi.org/10.1016/j.jallcom.2016.07.083
  8. Один И.Н., Гапанович М.В., Урханов О.Ю. и др. // Неорган. материалы. 2021. Т. 57. № 1. С. 3. [Odin I.N., Gapanovich M.V., Urkhanov O.Y., et al // Inorganic Materials. 2021. V. 57. № 1. P. 3].
  9. Гапанович М.В., Ракитин В.В., Новиков Г.Ф. // Журн. неорган. химии. 2022. Т. 67. № 1. С. 3. [Gapanovich M.V., Rakitin V.V., Novikov G.F. // Russ. J. Inorg. Chem. 2022. Т. 67. № 1. P. 1. https://doi.org/10.1134/S0036023622010041]
  10. Schneikart A., Schimper H.-J., Klein A. et al. // J. Phys. D: Appl. Phys. 2013. V. 46. № 30. P. 305109. https://doi.org/10.1088/0022-3727/46/30/305109
  11. Башкиров С.А., Гременок В.Ф., Иванов В.А. и др. // Физика твердого тела. 2012. Т. 54. № 12. C. 2372.
  12. Hartman K., Johnson J.L., Bertoni M.I. et al. // Thin Solid Films. 2011. V. 519. № 21. P. 7421. https://doi.org/10.1016/j.tsf.2010.12.186
  13. Wangperawong A., Herron S.M., Runser R.R. et al. // Appl. Phys. Lett. 2013. V. 103. P. 052105. https://doi.org/10.1063/1.4816746
  14. Sinsermsuksakul P., Heo J., Noh W. et al. // Adv. Energy Mater. 2011. V. 1. № 6. P. 1116. https://doi.org/10.1002/aenm.201100330
  15. Ballipinar F., Rastogi A.C. // J. Alloys Compd. 2017. V. 728. P. 179. 10.1016/j.jallcom.2017.08.295
  16. Sajeesh T.H., Warrier A.R., Kartha C.S. et al. // Thin Solid Films. 2010. V. 518. № 15. P. 4370. https://doi.org/10.1016/j.tsf.2010.01.040
  17. Takeuchia K., Ichimuraa M., Araia E. et al. // Sol. Energy Mater. Sol. Cells. 2003. V. 75. № 3–4. P. 427. https://doi.org/10.1016/S0927-0248(02)00192-7
  18. Avellaneda D., Nair M.T.S., Nair P.K. // J. Electrochem. Soc. 2008. V. 155. № 7. P. D517. https://doi.org/10.1149/1.2917198
  19. Hayakawa R., Takano Y. // Thin Solid Films. 2017. V. 636. P. 171. https://doi.org/10.1016/j.tsf.2017.06.005
  20. Маскаева Л.Н., Федорова Е.А., Шемякина А.И. и др. // Бутлеровские сообщения. 2014. Т. 37. № 2. С. 1. [Maskaeva L.N., Fyodorova E.A., Shemyakina A.I. et al. // Butlerov Commun. 2014. Vol. 37. №2. P.1]
  21. Chalapathi U., Poornaprakash B., Park S.H. // Solar Energy. 2016. V. 139. P. 238. https://doi.org/10.1016/j.solener.2016.09.046
  22. Chalapathi U., Poornaprakash B., Park S.H. // J. Alloys Compd. 2016. V. 689. P. 938. https://doi.org/10.1016/j.jallcom.2016.08.066
  23. Титов В.А., Рыбкин В.В., Соколов В.Ф. и др. Электронное материаловедение: Лабораторный практикум. Иваново: Иван. гос. хим.-технол. ун-т, 2003. 108 c.
  24. Ordejon P., Artacho E., Soler J.M. // Phys. Rev. B. 1996. V. 53. Р. R10441. http://dx.doi.org/10.1103/PhysRevB.53.R10441
  25. García A., Papior N., Akhtar A. et al. // J. Chem. Phys. 2020. V. 152. P. 204108. https://doi.org/10.1063/ 5.0005077
  26. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: УрО РАН, 2006. 218 с.
  27. Лурье Ю.Ю. Справочник по аналитической химии. М.: Химия, 1971. 456 с.
  28. Williamson G.K., Hall W.H. // Acta Metall. 1953. V. 1. P. 22. https://doi.org/10.1016/0001-6160(53)90006-6
  29. Chandrasekhar H.R., Humphreys R.G., Zwick U. et al. // Phys. Rev. B. 1977. V. 15. P. 2177.
  30. Stranick M.A., Moskwa A. // Surf. Sci. Spectra. 1993. V. 2. P. 45. https://doi.org/10.1116/1.1247723
  31. Patel M., Kim J. // Data in Brief. 2017. V. 15. P. 252. https://doi.org/10.1016/j.dib.2017.09.037.
  32. Vidal J., Lany S., d’Avezac M. et al. // Appl. Phys. Lett. 2012. V. 100. № 3. P. 032104. https://doi.org/10.1063/1.3675880
  33. Попов И.С., Кожевникова Н.С., Еняшин А.Н. и др. // Докл. АН. Сер. Физ. химия. 2017. Т. 472. № 4. С. 416. [Popov I.S., Kozhevnikova N.S., Enyashin A.N. at al. // Doklady Physical Chemistry. 2017. V. 472. № 2. Р. 23. https://doi.org/10.1134/S0012501617020026]
  34. Kozhevnikova N.S., Maskaeva L.N., Lekomtseva E.E. et al. // Nanosystems: Physics, Chemistry, Mathematics. 2020. V. 11. № 5. P. 529. https://doi.org/10.17586/2220-8054-2020-11-5-529-536
  35. Li W., Walther C.F.J., Kuc A. et al. // J. Chem. Theory Comput. 2013. V. 9. № 7. P. 2950. https://doi.org/10.1021/ct400235w
  36. Guneri E., Ulutas C., Kirmizigul F. et al. // Appl. Surf. Sci. 2010. V. 257. № 4. P. 1189. https://doi.org/10.1016/j.apsusc.2010.07.104
  37. Hartman K., Johnson J.L., Bertoni M.I. et al. // Thin Solid Films. 2011. V. 519. № 21. P. 7421. https://doi.org/10.1016/j.tsf.2010.12.186
  38. Koteeswara Reddy N., Hahn Y.B., Devika M. et al. // J. Appl. Phys. 2007. V. 101. P. 093522. https://doi.org/10.1063/1.2729450
  39. Parenteau M., Carlone C. // Phys. Rev. B. 1990. V. 41. P. 5227.
  40. Burton L.A., Colombara D., Abellon R.D. // Chem. Mater. 2013. V. 25. № 24. P. 4908. https://doi.org/10.1021/cm403046m
  41. Titova L.V., Fregoso B.M., Grimm R.L. Chapter 5: Group-IV monochalcogenides GeS, GeSe, SnS, SnSe, in book Chalcogenide: From 3D to 2D and Beyond. Woodhead Publishing Series in Electronic and Optical Materials: 2020. Р. 119–151.
  42. Urbah F. // Phys. Rev. 1953. V. 92. P. 1324.
  43. Ролдугин В.И. // Успехи химии. 2003. Т. 72. № 10. С. 931. [Roldugin V.I. // Russ. Chem. Rev. 2003. V. 72. № 10. P. 931. https://doi.org/10.1070/RC2003v072n10ABEH000805]
  44. Торхов Н.А., Божков В.Г., Ивонин И.В. и др. // Физика и техника полупроводников. 2009. Т. 43. № 1. С. 38.
  45. Самсонов В.М., Кузнецова Ю.В., Дьякова Е.В. // Журн. техн. физики. 2016. Т. 86. № 2. С. 71.
  46. Сдобняков Н.Ю., Антонов А.С., Иванов Д.В. Морфологические характеристики и фрактальный анализ металлических пленок на диэлектрических поверхностях. Тверь: Тверской гос. ун-т, 2019. 168 с.
  47. Смирнов Б.М. Физика фрактальных кластеров. М.: Наука, 1991. 136 с.
  48. Смирнов Б.М. // Успехи физ. наук. 1986. Т. 149. № 2. С. 177.
  49. Федер Е. Фракталы / Пер. с англ. М.: Мир, 1991. 254 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Thermodynamic analysis of the initial conditions for the formation of the SnS solid phase in an aqueous solution at 298 K: a - fractional concentrations () of the complexes SnOH+ (1), Sn(OH)2 (2), Sn(OH)3− (3), SnCit − (4), SnCit24− (5), Sn(OH)Cit2− (6), formed in the reaction system SnCl2–Na3Cit–Н2O; b — boundary conditions for the formation of solid phases SnS and Sn(OH)2 depending on the pH of the medium and the concentration of Na2S2O3 in the reaction system SnCl2–Na3Cit–Na2S2O3–H2O.

Download (511KB)
3. Fig. 2. Experimental X-ray diffraction patterns of thin SnS films obtained from aqueous solutions of Na2S2O3 at 343 K and 60, 90, 120 min of synthesis. Experimental X-ray diffraction pattern of a glass-ceramic substrate. Calculated X-ray diffraction patterns of the -SnS orthorhombic structure (space group Pnma) and the main components of the glass-ceramic substrate: MgSiO3 and TiO2 (rutile).

Download (201KB)
4. Fig. 3. Raman spectra of thin SnS films obtained from aqueous solutions of Na2S2O3 at 343 K and synthesis for 60, 90 and 120 min on glass-ceramic substrates.

Download (135KB)
5. Fig. 4. Survey spectra of the surface of a SnS film deposited in a Na2S2O3 solution for 120 min: before (surface) and after (Ar+ for 1 min) etching with Ar+ ions (4 keV) to a depth of ~6 nm.

Download (121KB)
6. Fig. 5. Surface topology and surface profiles along the normal, drawn through the center of the image, of thin SnS films obtained from aqueous solutions of Na2S2O3 at 343 K on glass-ceramic substrates, depending on the duration of synthesis, min: 30 (a), 60 (b), 90 (c), 120 (d). The size of the AFM images is 5 × 5 μm2.

Download (723KB)
7. Fig. 6. Density of electronic states (DS) for (001)SnS slabs in the case of complete composition and lattice (a) and in the case of defects: SnS with vacancies in the Sn sublattice (b), SnS with substitution of S for O (c), SnS with adsorbed S atoms (g) and SnS with adsorbed O atoms (e). The Sn5s, Sn5p, and S3p states are indicated in red, orange, and yellow, respectively. The O2p or S3p states of substitutional impurities or adsorbates are indicated in blue. DFT GGA calculations.

Download (847KB)
8. Fig. 7. Light transmission spectra T of thin SnS films deposited from Na2S2O3 solutions at 343 K (a). Graphic determination of the optical band gap Eg (b) and Urbach energy EU (c) for SnS films deposited for 60, 90 and 120 min.

Download (300KB)
9. Fig. 8. Scheme of SnS film formation, according to the “cluster–particle” model (Witten–Sander model), in three-dimensional space.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies