Antioxidant Activity of Conjugates of Cerium Dioxide Nanoparticles with Human Serum Albumin Isolated from Biological Fluids

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, an analysis was made of the antioxidant properties of conjugates of CeO2 nanoparticles with human serum albumin (CeO2@HSA), including HSA isolated from blood plasma and biological fluids similar in composition to blood plasma, namely, peritoneal (ascitic) and synovial (articular) fluids. The antioxidant activity of hybrid nanomaterials was studied in relation to alkylperoxyl radicals by luminol-dependent chemiluminescence. It was shown that the interaction of CeO2 nanoparticles with purified human serum albumin is accompanied by a decrease in the antioxidant and prooxidant potential of albumin by a factor of ⁓1.5. Presumably, this is caused by the interaction of nanodispersed CeO2 with sulfhydryl groups of the protein. Conjugates of CeO2 nanoparticles with albumin isolated from biological fluids (CeO2@HSA) exhibit a synergistic antioxidant effect. In this case, the mechanism of antioxidant activity is fundamentally different from that for CeO2 sols modified with purified human serum albumin. According to quantitative assessment, the antioxidant capacity of CeO2@HSA conjugates is ⁓20 times lower than that of Trolox, a water-soluble analog of vitamin E.

About the authors

M. M. Sozarukova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: S_MadinaM@bk.ru
119991, Moscow, Russia

E. V. Proskurnina

Research Centre for Medical Genetics

Email: S_MadinaM@bk.ru
115522, Moscow, Russia

A. E. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: S_MadinaM@bk.ru
119991, Moscow, Russia

V. K. Ivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: S_MadinaM@bk.ru
119991, Moscow, Russia

References

  1. Hong S., Choi D.W., Kim H.N. et al. // Pharmaceutics. 2020. V. 12. № 7. P. 604. https://doi.org/10.3390/pharmaceutics12070604
  2. Ritz S., Schöttler S., Kotman N. et al. // Biomacromolecules. 2015. V. 16. № 4. P. 1311. https://doi.org/10.1021/acs.biomac.5b00108
  3. Saptarshi S.R., Duschl A., Lopata A.L. // J. Nanobiotechnology. 2013. V. 11. № 1. P. 26. https://doi.org/10.1186/1477-3155-11-26
  4. Ostroushko A.A., Gagarin I.D., Danilova I.G. et al. // Nanosyst. Physics. Chem. Math. 2019. P. 318. https://doi.org/10.17586/2220-8054-2019-10-3-318-349
  5. Ke P.C., Lin S., Parak W.J. et al. // ACS Nano. 2017. V. 11. № 12. P. 11773. https://doi.org/10.1021/acsnano.7b08008
  6. Kopac T. // Int. J. Biol. Macromol. 2021. V. 169. P. 290. https://doi.org/10.1016/j.ijbiomac.2020.12.108
  7. Lundqvist M., Stigler J., Cedervall T. et al. // ACS Nano. 2011. V. 5. № 9. P. 7503. https://doi.org/10.1021/nn202458g
  8. Zanganeh S., Spitler R., Erfanzadeh M. et al. // Int. J. Biochem. Cell Biol. 2016. V. 75. P. 143. https://doi.org/10.1016/j.biocel.2016.01.005
  9. Wu Y.-Z., Tsai Y.-Y., Chang L.-S. et al. // Pharmaceuticals. 2021. V. 14. № 11. P. 1071. https://doi.org/10.3390/ph14111071
  10. Lynch I., Dawson K.A. // Nano Today. 2008. V. 3. № 1–2. P. 40. https://doi.org/10.1016/S1748-0132(08)70014-8
  11. Corbo C., Molinaro R., Tabatabaei M. et al. // Biomat. Sci. 2017. V. 5. № 3. P. 378. https://doi.org/10.1039/c6bm00921b
  12. Hajipour M.J., Laurent S., Aghaie A. et al. // Biomat. Sci. 2014. V. 2. № 9. P. 1210. https://doi.org/10.1039/C4BM00131A
  13. Colapicchioni V., Tilio M., Digiacomo L. et al. // Int. J. Biochem. Cell Biol. 2016. V. 75. P. 180. https://doi.org/10.1016/j.biocel.2015.09.002
  14. Mahmoudi M., Lynch I., Ejtehadi M.R. et al. // Chem. Rev. 2011. V. 111. № 9. P. 5610. https://doi.org/10.1021/cr100440g
  15. Monopoli M.P., Walczyk D., Campbell A. et al. // J. Am. Chem. Soc. 2011. V. 133. № 8. P. 2525. https://doi.org/10.1021/ja107583h
  16. Park S.J. // Int. J. Nanomedicine. 2020. V. 15. P. 5783. https://doi.org/10.2147/IJN.S254808
  17. Shang W., Nuffer J.H., Dordick J.S. et al. // Nano Lett. 2007. V. 7. № 7. P. 1991. https://doi.org/10.1021/nl070777r
  18. Tenzer S., Docter D., Kuharev J. et al. // Nat. Nanotechnol. 2013. V. 8. № 10. P. 772. https://doi.org/10.1038/nnano.2013.181
  19. Ivanov V.K., Polezhaeva O.S., Tret’yakov Y.D. // Russ. J. Gen. Chem. 2010. V. 80. № 3. P. 604. https://doi.org/10.1134/S1070363210030412
  20. Singh S. // Biointerphases. 2016. V. 11. № 4. P. 04B202. https://doi.org/10.1116/1.4966535
  21. Shcherbakov A.B., Reukov V.V., Yakimansky A.V. et al. // Polymers (Basel). 2021. V. 13. № 6. P. 924. https://doi.org/10.3390/polym13060924
  22. Popov A.L., Shcherbakov A.B., Zholobak N.M. et al. // Nanosyst. Physics. Chem. Math. 2017. P. 760. https://doi.org/10.17586/2220-8054-2017-8-6-760-781
  23. Ivanov V.K., Usatenko A.V., Shcherbakov A.B. // Russ. J. Inorg. Chem. 2009. V. 54. № 10. P. 1522. https://doi.org/10.1134/S0036023609100039
  24. Heckert E.G., Karakoti A.S., Seal S. et al. // Biomaterials. 2008. V. 29. № 18. P. 2705. https://doi.org/10.1016/j.biomaterials.2008.03.014
  25. Korsvik C., Patil S., Seal S. et al. // Chem. Commun. 2007. № 10. P. 1056. https://doi.org/10.1039/b615134e
  26. Sozarukova M.M., Shestakova M.A., Teplonogova M.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 4. P. 597. https://doi.org/10.1134/S0036023620040208
  27. Sozarukova M.M., Proskurnina E.V., Baranchikov A.E. et al. // Nanosyst. Physics. Chem. Math. 2020. V. 11. № 3. P. 324. https://doi.org/10.17586/2220-8054-2020-11-3-324-332
  28. Pirmohamed T., Dowding J.M., Singh S. et al. // Chem. Commun. 2010. V. 46. № 16. P. 2736. https://doi.org/10.1039/b922024k
  29. Wei X., Li X., Feng Y. et al. // RSC Adv. 2018. V. 8. № 21. P. 11764. https://doi.org/10.1039/C8RA00622A
  30. Sozarukova M.M., Proskurnina E.V., Ivanov V.K. // Nanosyst. Physics. Chem. Math. 2021. V. 12. № 3. P. 283. https://doi.org/10.17586/2220-8054-2021-12-3-283-290
  31. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Molecules. 2023. V. 28. № 9. P. 3811. https://doi.org/10.3390/molecules28093811
  32. Filippova A.D., Sozarukova M.M., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 1948. https://doi.org/10.1134/S0036023622601581
  33. Sozarukova M.M., Proskurnina E.V., Popov A.L. et al. // RSC Adv. 2021. V. 11. № 56. P. 35351. https://doi.org/10.1039/D1RA06730C
  34. Liu W., Rose J., Plantevin S. et al. // Nanoscale. 2013. V. 5. № 4. P. 1658. https://doi.org/10.1039/c2nr33611a
  35. Khoshgozaran Roudbaneh S.Z., Kahbasi S., Sohrabi M.J. et al. // J. Mol. Liq. 2019. V. 296. P. 111839. https://doi.org/10.1016/j.molliq.2019.111839
  36. Simón-Vázquez R., Lozano-Fernández T., Peleteiro-Olmedo M. et al. // Colloids Surf., B: Biointerfaces. 2014. V. 113. P. 198. https://doi.org/10.1016/j.colsurfb.2013.08.047
  37. Roche M., Rondeau P., Singh N.R. et al. // FEBS Lett. 2008. V. 582. № 13. P. 1783. https://doi.org/10.1016/j.febslet.2008.04.057
  38. Quinlan G.J., Martin G.S., Evans T.W. // Hepatology. 2005. V. 41. № 6. P. 1211. https://doi.org/10.1002/hep.20720
  39. Pilati D., Howard K.A. // Expert Opin. Drug Metab. Toxicol. 2020. V. 16. № 9. P. 783. https://doi.org/10.1080/17425255.2020.1801633
  40. Larsen M.T., Kuhlmann M., Hvam M.L. et al. // Mol. Cell. Ther. 2016. V. 4. P. 3. https://doi.org/10.1186/s40591-016-0048-8
  41. Shcherbakov A.B., Teplonogova M.A., Ivanova O.S. et al. // Mater. Res. Express. 2017. V. 4. № 5. P. 055008. https://doi.org/10.1088/2053-1591/aa6e9a
  42. Colantonio D.A., Dunkinson C., Bovenkamp D.E. et al. // Proteomics. 2005. V. 5. № 15. P. 3831. https://doi.org/10.1002/pmic.200401235
  43. Alekseev A.V., Proskurnina E.V., Vladimirov Y.A. // Moscow Univ. Chem. Bull. 2012. V. 67. № 3. P. 127. https://doi.org/10.3103/S0027131412030029
  44. Vorokh A.S. // Nanosyst. Physics. Chem. Math. 2018. P. 364. https://doi.org/10.17586/2220-8054-2018-9-3-364-369
  45. Proskurnina E.V., Polimova A.M., Sozarukova M.M. et al. // Bull. Exp. Biol. Med. 2016. V. 161. № 1. P. 131. https://doi.org/10.1007/s10517-016-3362-x
  46. Sozarukova M.M., Polimova A.M., Proskurnina E.V. et al. // Biofizika. 2016. V. 61. № 2. P. 337.
  47. Baba S.P., Bhatnagar A. // Curr. Opin. Toxicol. 2018. V. 7. P. 133. https://doi.org/10.1016/j.cotox.2018.03.005
  48. Ulrich K., Jakob U. // Free Radic. Biol. Med. 2019. V. 140. P. 14. https://doi.org/10.1016/j.freeradbiomed.2019.05.035
  49. Winther J.R., Thorpe C. // Biochim. Biophys. Acta. 2014. V. 1840. № 2. P. 838. https://doi.org/10.1016/j.bbagen.2013.03.031
  50. Пойменова Ю.А., Созарукова М.М., Проскурнина Е.В. // Современные проблемы медицинской биохимии. Сб. статей участников Междунар. науч.-практ. конф., посвящ. 85-летию проф. В.К. Кухты, Минск, 2022. С. 224.
  51. Han G.-C., Peng Y., Hao Y.-Q. et al. // Anal. Chim. Acta. 2010. V. 659. № 1–2. P. 238. https://doi.org/10.1016/j.aca.2009.11.057
  52. Rollin-Genetet F., Seidel C., Artells E. et al. // Chem. Res. Toxicol. 2015. V. 28. № 12. P. 2304. https://doi.org/10.1021/acs.chemrestox.5b00319
  53. Rosenoer M. // Albumin: Structure, Function and Uses, Elsevier, 2014. https://www.elsevier.com/books/albumin-structure-function-and-uses/rosenoer/978-0-08-019603-9 (accessed May 11, 2023).
  54. Kragh-Hansen U., Chuang V.T.G., Otagiri M. // Biol. Pharm. Bull. 2002. V. 25. № 6. P. 695. https://doi.org/10.1248/bpb.25.695
  55. Rabbani G., Ahn S.N. // Int. J. Biol. Macromol. 2019. V. 123. P. 979. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  56. Arts M.J.T., Haenen G.R.M., Voss H.-P. et al. // Food Chem. Toxicol. 2004. V. 42. № 1. P. 45. https://doi.org/10.1016/j.fct.2003.08.004
  57. Richard D., Kefi K., Barbe U. et al. // Pharmacol. Res. 2008. V. 57. № 6. P. 451. https://doi.org/10.1016/j.phrs.2008.05.002
  58. Singh S., Dosani T., Karakoti A.S., Kumar A. et al. // Biomater. 2011. V. 32. № 28. P. 6745. https://doi.org/10.1016/j.biomaterials.2011.05.073
  59. Teichroeb J.H., Forrest J.A., Jones L.W. // Eur. Phys. J. E. 2008. V. 26. № 4. P. 411. https://doi.org/10.1140/epje/i2007-10342-9
  60. Engelborghs Y. // J. Fluor. 2003. V. 13. № 1. P. 9. https://doi.org/10.1023/A:1022398329107
  61. Ghisaidoobe A.B.T., Chung S.J. // Int. J. Mol. Sci. 2014. V. 15. № 12. P. 22518. https://doi.org/10.3390/ijms151222518
  62. Vivian J.T., Callis P.R. // Biophys. J. 2001. V. 80. № 5. P. 2093. https://doi.org/10.1016/S0006-3495(01)76183-8

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (90KB)
3.

Download (267KB)
4.

Download (160KB)
5.

Download (137KB)
6.

Download (173KB)
7.

Download (175KB)

Copyright (c) 2023 М.М. Созарукова, Е.В. Проскурнина, А.Е. Баранчиков, В.К. Иванов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies