On the Interaction of Gold(III) Complexes with Human Serum Albumin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of gold(III) complexes (Au(bipy)
, Au(phen)
, and Au(dien-H)Cl+) with human serum albumin (HSA) was studied in aqueous solutions (pH 7.4, CNaCl = 0.2 M, CAu = (2–10) × 10–5 M, CHSA < 6 × 10–4 M) at 25°C. In all cases, gold(III) is reduced to gold(I), which forms a complex with HSA. When an excess of HSA is present, the time required for complete transformation of the complexes does not exceed 1 h. In addition, it was shown that the redox reaction of gold(III) complexes with cysteine is much faster than the reaction with methionine.

About the authors

I. V. Mironov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: imir@niic.nsc.ru
630090, Novosibirsk, Russia

V. Yu. Kharlamova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: imir@niic.nsc.ru
630090, Novosibirsk, Russia

References

  1. Dey D., Al-Hunaiti A., Gopal V. et al. // J. Mol. Struct. 2020. V. 1222. P. 128919. https://doi.org/10.1016/j.molstruc.2020.128919
  2. Корман Д.Б., Островская Л.А., Кузьмин В.А. // Вопросы онкологии. 2018. Т. 64. № 6. С. 697.
  3. Yeo C.I., Ooi K.K., Tiekink E.R.T. // Molecules. 2018. V. 23. P. 1410. https://doi.org/10.3390/molecules23061410
  4. Van der Westhuizen D., Bezuidenhout D.I., Munro O.Q. // Dalton Trans. 2021. V. 50. P. 17413. https://doi.org/10.1039/d1dt02783b
  5. Radisavljević S., Petrović B. // Front. Chem. 2020. V. 8. P. 379. https://doi.org/10.3389/fchem.2020.00379
  6. Yang Z., Jiang G., Xu Z. et al. // Coord. Chem. Rev. 2020. V. 423. 213492. https://doi.org/10.1016/j.ccr.2020.213492
  7. Lu Y., Ma X., Chang X. et al. // Chem. Soc. Rev. 2022. V. 51. P. 5518. https://doi.org/10.1039/d1cs00933h
  8. Zhang J., Li Y., Fang R. et al. // Front. Pharmacol. 2022. V. 13. 979951. https://doi.org/10.3389/fphar.2022.979951
  9. Moreno-Alcántar G., Picchetti P., Casini A. // Angew. Chem. Int. Ed. 2023. V. 62. Issue 22. e202218000. https://doi.org/10.1002/anie.202218000
  10. Bondžić A.M., Vasić Anićijević D.D., Janjić G.V. et al. // Curr. Med. Chem. 2021. V. 28. P. 4742. https://doi.org/10.2174/0929867328999210101233801
  11. Petrović V., Petrović S., Joksić G. et al. // J. Inorg. Biochem. 2014. V. 140. P. 228. https://doi.org/10.1016/j.jinorgbio.2014.07.015
  12. Radulović N.S., Stojanović N.M., Glišić B.Đ. et al. // Polyhedron. 2018. V. 141. P. 164. https://doi.org/10.1016/j.poly.2017.11.044
  13. Dickson P.N., Wehrli A., Geier G. // Inorg. Chem. 1988. V. 27. P. 2921. https://doi.org/10.1021/ic00290a006
  14. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 972.
  15. Миронов И.В., Харламова В.Ю., Ху Ц. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 342.
  16. Turell L., Radi R., Alvarez B. // Free Radic. Biol. Med. 2013. V. 65. P. 244. https://doi.org/10.1016/j.freeradbiomed.2013.05.050
  17. Brown D.H., Smith W.E. // Chem. Soc. Rev. 1980. P. 217. https://doi.org/10.1039/CS9800900217
  18. Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/c5cs00132c
  19. Walz D.T., DiMartino M. J., Griswold D.E. et al. // Am. J. Med. Oral Gold Symposium. 1983. V. 75. P. 90. https://doi.org/10.1016/0002-9343(83)90481-3
  20. Миронов И.В., Харламова В.Ю. // Журн. неорган. химии. 2017. Т. 62. № 12. С. 1672.
  21. Soni V., Sindal R.S., Mehrotra R.N. // Polyhedron. 2005. V. 24. P. 1167. https://doi.org/10.1016/j.poly.2005.03.057
  22. Миронов И.В. // Журн. неорган. химии. 2007. Т. 52. № 5. С. 857.
  23. Mironov I.V., Kharlamova V.Yu. // J. Solution Chem. 2020. V. 49. P. 583. https://doi.org/10.1007/s10953-020-00994-0
  24. Massai L., Grifagni D., De Santis A. et al. // Biomolecules. 2022. V. 12. P. 1675. https://doi.org/10.3390/biom12111675
  25. Roberts J.R., Xiao J., Schliesman B. et al. // Inorg. Chem. 1996. V. 35. P. 424. https://doi.org/10.1021/ic9414280
  26. Darabi F., Marzo T., Massai L. et al. // J. Inorg. Biochem. 2015. V. 149. P. 102. https://doi.org/10.1016/j.jinorgbio.2015.03.013
  27. Best S.L., Sadler P.J. // Gold Bull. 1996. V. 29. P. 87. https://doi.org/10.1007/BF03214741
  28. Gabbiani C., Massai L., Scaletti F. et al. // J. Biol. Inorg. Chem. 2012. V. 17. P. 1293. https://doi.org/10.1007/s00775-012-0952-6
  29. Massai L., Zoppi C., Cirri D. et al. // Front. Chem. 2020. V. 8. 581648. https://doi.org/10.3389/fchem.2020.581648
  30. Messori L., Cinellu M.A., Merlino A. // ACS Med. Chem. Lett. 2014. V. 5. P. 1110. https://doi.org/10.1021/ml500231b
  31. Pratesi A., Cirri D., Fregona D. et al. // Inorg. Chem. 2019. V. 58. P. 10616. https://doi.org/10.1021/acs.inorgchem.9b01900
  32. Pacheco E.A., Tiekink E.R.T., Whitehouse M.W. Gold Chemistry: Applications and Future Directions in the Life Sciences. Chapter 6: Gold Compounds and Their Applications in Medicine. WILEY-VCH Verlag GmbH & Co, 2009. 283 p.
  33. Messori L., Balerna A., Ascone I. et al. // J. Biol. Inorg. Chem. 2011. V. 16. P. 491. https:// doi.org/https://doi.org/10.1007/s00775-010-0748-5
  34. Casini A., Hartinger C., Gabbiani C. et al. // J. Inorg. Biochem. 2008. V. 102. P. 564. https://doi.org/10.1016/j.jinorgbio.2007.11.003
  35. Nobili S., Mini E., Landini I. et al. // Med. Res. Rev. 2010. V. 30. P. 550. https://doi.org/10.1002/med.20168
  36. Casini A., Cinellu M.A., Minghetti G. et al. // J. Med. Chem. 2006. V. 49. P. 5524. https://doi.org/10.1021/jm060436a
  37. Al-Maythalony B.A., Wazeer M.I.M., Isab A.A., Ahmad S. // Spectroscopy. 2010. V. 24. P. 567. https://doi.org/10.3233/SPE-2010-0478
  38. Đurović M.D., Bugarčić Ž.D., Heinemann F.W., Eldik R. // Dalton Trans. 2014. V. 43. P. 3911. https://doi.org/10.1039/C3DT53140F
  39. Glišić B.Đ., Djuran M.I., Stanić Z.D., Rajković S. // Gold Bull. 2014. V. 47. P. 33. https://doi.org/10.1007/s13404-013-0108-7
  40. Casini A., Diawara M.C., Scopelliti R. et al. // Dalton Trans. 2010. V. 39. P. 2239. https://doi.org/10.1039/b921019a
  41. Baddley W.H., Basolo F., Gray H.B. et al. // Inorg. Chem. 1963. V. 2. P. 921. https://doi.org/10.1021/ic50009a011
  42. Marcon G., Messori L., Orioli P. et al. // Eur. J. Biochem. 2003. V. 270. P. 4655. https://doi.org/10.1046/j.1432-1033.2003.03862.x
  43. Mirzadeh N., Reddy T.S., Bhargava S.K. // Coord. Chem. Rev. 2019. V. 388. P. 343. https://doi.org/10.1016/j.ccr.2019.02.027
  44. Kim J.H., Reeder E., Parkin S., Awuah S.G. // Sc. Rep. 2019. V. 9. P. 12335. https://doi.org/10.1038/s41598-019-48584-5
  45. Pavic A, Glišić B.Đ., Vojnovic S. et al. // J. Inorg. Biochem. 2017. V. 174. P. 156. https://doi.org/10.1016/j.jinorgbio.2017.06.009
  46. Landini I., Lapucci A., Pratesi A. et al. // Oncotarget. 2017. V. 8. P. 96062. https://doi.org/10.18632/oncotarget.21708

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (133KB)
3.

Download (36KB)
4.

Download (140KB)
5.

Download (144KB)
6.

Download (68KB)
7.

Download (53KB)
8.

Download (92KB)
9.

Download (82KB)

Copyright (c) 2023 И.В. Миронов, В.Ю. Харламова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies