Synthesis of Boron Nitride by Reduction of Boron Oxide with Aluminum in Nitrogen

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of studies of the self-propagating high temperature synthesis (SHS) of boron nitride via chemical reduction of boron oxide with aluminum in a nitrogen medium. The phase composition of the powder reaction products depending on the nitrogen pressure during the synthesis was studied by X-ray diffraction. It was found that SHS in the B2O3–Al system gives the BN–Al2O3 powder material containing 20–28 wt % hexagonal boron nitride depending on the nitrogen pressure. Microstructure examination showed that the obtained powder materials contains separate hexagonal BN particles with <3 μm size. The differences in the density and morphology of BN and Al2O3 determine the possibility of BN isolation from the obtained powder mixture by the pneumatic powder separation methods.

About the authors

D. A. Tkachev

Tomsk State University

Email: d.tkachev11@gmail.com
634050, Tomsk, Russia

M. Kh. Ziatdinov

Tomsk State University

Email: d.tkachev11@gmail.com
634050, Tomsk, Russia

I. A. Zhukov

Tomsk State University

Email: d.tkachev11@gmail.com
634050, Tomsk, Russia

V. A. Litvinova

Tomsk State University of Architecture and Building

Email: d.tkachev11@gmail.com
634003, Tomsk, Russia

I. A. Belchikov

Tomsk State University

Email: d.tkachev11@gmail.com
634050, Tomsk, Russia

N. G. Kravtsov

Tomsk State University

Author for correspondence.
Email: d.tkachev11@gmail.com
634050, Tomsk, Russia

References

  1. Перевислов C.Н. // Новые огнеупоры. 2019. № 6. P. 35. https://doi.org/10.1007/s11148-019-00355-5
  2. Chen B., Bi Q., Yang J. et al. // Tribol. Int. 2008. V. 41. № 12. P. 1145. https://doi.org/10.1016/j.triboint.2008.02.014
  3. Engler M., Lesniak C., Damasch R. et al. // Ceram. Forum Int. 2007. V. 84. № 12. P. E49.
  4. Eichler J., Lesniak C. // J. Eur. Ceram. Soc. 2008. V. 28. № 5. P. 1105. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  5. Sigl L.S., Hunold K. // Iron Steelmaker. 1991. V. 18. № 2. P. 31.
  6. Rudolph S. Aluminium Cast House Technology: Seventh Australian Asian Pacific Conference. John Wiley & Sons, 2013. 163 p.
  7. Santosh S., Rajkumar K., Gnanavelbabu A. // Mater. Sci. Forum. Trans Tech Publications. 2015. V. 830–831. P. 87. https://doi.org/10.4028/www.scientific.net/MSF.830-831.87
  8. Jia D., Zhou L., Yang Z. et al. // J. Am. Ceram. Soc. 2011. V. 94. № 10. P. 3552. https://doi.org/10.1111/j.1551-2916.2011.04540.x
  9. Jia K., Meng X., Wang W. // Processes. 2021. V. 9. № 5. P. 871. https://doi.org/10.3390/pr9050871
  10. Bao J. // Electron. Mater. Lett. 2016. V. 12. P. 1. https://doi.org/10.1007/s13391-015-5308-2
  11. Kumar R., Sahoo. S., Joanni E. et al. // Nano Res. 2019. V. 12. № 11. P. 2655. https://doi.org/10.1007/s12274-019-2467-8
  12. Liu T., Li Y., He J. et al. // New J. Chem. Royal Soc. Chem. 2019. V. 43. № 8. P. 3280. https://doi.org/10.1039/C8NJ05299A
  13. Chao Y., Tang B., Luo J. et al. // J. Colloid Interface Sci. 2021. V. 584. P. 154. https://doi.org/10.1016/j.jcis.2020.09.075
  14. Zhao G., Wang A., He W. et al. // Adv. Mater. Interfaces. 2019. V. 6. № 7. P. 1900062. https://doi.org/10.1002/admi.201900062
  15. Yoosefian M., Etminan N., Zeraati Moghani M. et al. // Superlattices Microstruct. 2016. V. 98. P. 325. https://doi.org/10.1016/j.spmi.2016.08.049
  16. He Y., Li D., Gao W. et al. // Nanoscale. 2019. V. 11. № 45. P. 21909. https://doi.org/10.1039/C9NR07153A
  17. Chigo-Anota E., Escobedo-Morales A., Hermandez-Cocoletzi H. et al. // Physica E: Low Dimens. Syst. Nanostruct. 2015. V. 74. P. 538. https://doi.org/10.1016/j.physe.2015.08.008
  18. Sukhorukova I.V., Zhitnyak I.Y., Kovalskii A.M. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. № 31. P. 17217. https://doi.org/10.1021/acsami.5b04101
  19. Hu J., Yue M., Zhang P. et al. // Angew. Chem. Int. 2020. V. 59. № 17. P. 6715. https://doi.org/10.1002/anie.201914819
  20. Yoon S.J., Jha A. // J. Mater. Sci. 996. V. 31. № 9. P. 2265. https://doi.org/10.1007/BF00356318
  21. Tagawa H., Itouji O. // Bull. Chem. Soc. Jpn. 962. V. 35. № 9. P. 1536. https://doi.org/10.1246/bcsj.35.1536
  22. Hirano S.-I., Yogo T., Asada S. et al. // J. Am. Ceram. Soc. 1989. V. 72. № 1. P. 66. https://doi.org/10.1111/j.1151-2916.1989.tb05955.x
  23. Chen G.-Q., He X.-D., Han J.-C. et al. // J. Mater. Sci. Lett. 2000. V. 19. № 1. P. 81. https://doi.org/10.1023/A:1006772320587
  24. Haubner R., Wilhelm M., Weissengacher R. et al. Structure and Bonding. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. P. 1. https://doi.org/10.1007/3-540-45623-6_1
  25. Gafri O., Grill A., Itzhak D. et al. // Thin Solid Films. 1980. V. 72. № 3. P. 523. https://doi.org/10.1016/0040-6090(80)90542-8
  26. Evseev N.S., Matveev A.E., Nikitin P.Y. // Russ. J. Inorg. Chem. 2022. V. 67. № 8. P. 1319. https://doi.org/10.1134/S0036023622080095
  27. Bazhin P.M., Konstantinov A.S., Chizhikov A.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2040. https://doi.org/10.1134/S0036023622601696
  28. Сафаева Д.Р., Титова Ю.В., Майдан Д.А. // Современные материалы, техника и технологии. 2018. № 5(20). С. 70.
  29. Сафаева Д.Р., Титова Ю.В., Майдан Д.А. // Современные материалы, техника и технологии. 2019. № 5(26). С. 164.
  30. Borovinskaya I.P., Ignat′eva T.I., Vershinnikov V.I. et al. // Inorg. Mater. 2003. V. 39. P. 588. https://doi.org/10.1023/A:1024097119257
  31. Амосов А.П., Боровинская И.П., Мержанов А.Г. Порошковая технология самораспространяющегося высокотемпературного синтеза материалов. М.: Машиностроение-1, 2007. 567 с.
  32. Мержанов А.Г., Мукасьян А.P. // Твердопламенное горение. М.: ООО “ТОРУС ПРЕСС”, 2007. 336 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (53KB)
3.

Download (914KB)
4.

Download (153KB)
5.

Download (236KB)
6.

Download (1MB)
7.

Download (645KB)
8.

Download (162KB)
9.

Download (91KB)

Copyright (c) 2023 Д.А. Ткачев, М.Х. Зиатдинов, И.А. Жуков, В.А. Литвинова, И.А. Бельчиков, Н.Г. Кравцов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».