Preparation of NASICON Silico Phosphates of Composition Na1 + xZr2SixP3 – xO12 by Pyrolysis of Solution in Melt
- Authors: Grishchenko D.N.1, Medkov M.A.1
-
Affiliations:
- Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 68, No 8 (2023)
- Pages: 1042-1049
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/136403
- DOI: https://doi.org/10.31857/S0044457X23600366
- EDN: https://elibrary.ru/HXPQYD
- ID: 136403
Cite item
Abstract
A new method for preparing Na1 + xZr2SixP3 – xO12 (0 < x < 3) based on pyrolysis of solution containing a mixture of organic components in rosin melt has been proposed. Effect of superstoichiometric amounts of sodium and phosphorus on the phase composition of synthesis products has been proved. It has been found that precursor for the sample of maximal purity of phase composition is prepared at molar ratio Na : Zr : Si : P = (1.15 + x) : 2 : x : (y – x), where y = 3 (1.20 + x)/(1 + x). Precursor calcination temperature is 1000°C. Different NASICON compositions without crystalline admixtures have been obtained in the range 1.5 ≤ x ≤ 2.12. The prepared samples have been studied by X-ray powder diffraction and scanning electron microscopy. The disclosed method of synthesis is promising for the preparation of NASICON as both bulk materials and thin layer coatings.
About the authors
D. N. Grishchenko
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Email: grishchenko@ich.dvo.ru
690022, Vladivostok, Russia
M. A. Medkov
Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences
Author for correspondence.
Email: grishchenko@ich.dvo.ru
690022, Vladivostok, Russia
References
- Hong H.Y.-P. // Mater. Res. Bull. 1976. V. 11. № 2. P. 173. https://doi.org/10.1016/0025-5408(76)90073-8
- Goodenough J.B., Hong H.Y.-P., Kafalas J.A. // Mater. Res. Bull. 1976. V. 11. № 2. P. 203. https://doi.org/10.1016/0025-5408(76)90077-5
- Miyachi Y., Sakai G., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2003. V. 93. № 1–3. P. 250. https://doi.org/10.1016/S0925-4005(03)00174-6
- Paściak G., Mielcarek W., Prociów K., Warycha J. // Ceram. Int. 2014. V. 40. № 8. P. 12783. https://doi.org/10.1016/j.ceramint.2014.04.132
- Meunier M., Izquierdo R., Hasnaoui L. et al. // Appl. Surf. Sci. 1998. V. 127–129. P. 466. https://doi.org/10.1016/S0169-4332(97)00674-0
- Tetsuya K., Miyachi Y., Shimanoe K., Yamazoe N. // Sens. Actuators, B. 2001. V. 80. № 1. P. 28. https://doi.org/10.1016/S0925-4005(01)00878-4
- Kim H.J., Choi J.W., Kim S.D., Yoo K.S. // Mater. Sci. Forum. 2007. V. 544–545. P. 925. https://doi.org/10.4028/www.scientific.net/MSF.544-545.925
- Jalalian-Khakshour A., Phillips Ch., Jackson L. et al. // J. Mater. Sci. 2020. V. 55. P. 2291. https://doi.org/10.1007/s10853-019-04162-8
- Naqash S., Sebold D., Tietz F., Guillon O. // J. Am. Ceram. Soc. 2019. V. 102. № 3. P. 1057. https://doi.org/10.1111/jace.15988
- Yang G., Zhai Y., Yao J. et al. // Chem. Commun. 2021. V. 57. P. 4023. https://doi.org/10.1039/d0cc07261c
- Noguchi Y., Kobayashi E., Plashnitsa L.-S. et al. // Electrochim. Acta. 2013. V.101. P. 59. https://doi.org/10.1016/j.electacta.2012.11.038
- Fuentes R.O., Marques F.M.B., Franco J.I. // Bol. Soc. Esp. Ceram. Vidrio. 1999. V. 38. № 6. P. 631.
- Fuentes R.O., Figueiredo F., Marques F.-M.B., Franco J.I. // Solid State Ionics. 2001. V. 139. № 3–4. P. 309. https://doi.org/10.1016/S0167-2738(01)00683-X
- Fuentes R.O., Figueiredo F.M., Marques F.M.B., Franco J.I. // Solid State Ionics. 2001. V. 140. № 1–2. P. 173. https://doi.org/10.1016/S0167-2738(01)00701-9
- Shimizu Y., Azuma Y., Michishita S. // J. Mater. Chem. 1997. V. 7. P. 1487.
- Naqash S., Tietz F., Yazhenskikh E. et al. // Solid State Ionics. 2019. V. 336. P. 57. https://doi.org/10.1016/j.ssi.2019.03.017
- Грищенко Д.Н., Курявый В.Г., Подгорбунский А.Б., Медков М.А. // Журн. неорган. химии. 2023. № 1. С. 17. https://doi.org/10.31857/S0044457X22601043
- Грищенко Д.Н., Дмитриева Е.Э., Медков М.А. // Хим. технология. 2022. Т. 23. № 10. С. 418. https://doi.org/10.31044/1684-5811-2022-23-10-418-423
- Narayanan S., Reid S., Butler S., Thangadurai V. // Solid State Ionics. 2019. V. 331. P. 22. https://doi.org/10.1016/j.ssi.2018.12.003
- Rao Y.B., Bharathi K.K., Patro L.N. // Solid State Ionics. 2021. V. 366–377. P. 115671. https://doi.org/10.1016/j.ssi.2021.115671
- Wang H., Zhao G., Wang S. et al. // Nanoscale. 2022. V. 14. № 3. P. 823. https://doi.org/10.1039/d1nr06959d
Supplementary files
