Синтез Fe-ZIF и особенности сорбции ионов цинка и меди на его поверхности

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Предложен метод синтеза цеолитного имидазолатного каркаса на основе Fe(III) при различных соотношениях металл/линкер, который используется в качестве сорбента для извлечения ионов цинка(II) и меди(II). Для полученных материалов установлено, что частицы имеют гексагональную структуру и представляют собой микрогетерогенную систему со средним размером частиц 0.05–0.1 мкм. Получены изотермы адсорбции азота в порах Fe-ZIF. В результате их обработки найдены параметры пористой структуры синтезированных образцов. Исследована адсорбция ионов Cu2+ и Zn2+ из водных растворов при температуре 298.15 K и показана их высокая степень извлечения. Процесс адсорбции ионов меди и цинка во всех случаях является самопроизвольным. Максимальная степень заполнения активных центров поверхности достигает 0.96 и 0.71 для меди и цинка соответственно. Установлено протекание адсорбции в объеме энергетически однородного пористого адсорбента и преобладание в структуре 2-этилимидазолата железа(III) микропор.

作者简介

А. Вашурин

Ивановский государственный химико-технологический университет

Email: filippov@isuct.ru
Россия, 153000, Иваново, Шереметевский пр-т, 7

А. Карасева

Ивановский государственный химико-технологический университет

Email: filippov@isuct.ru
Россия, 153000, Иваново, Шереметевский пр-т, 7

Д. Филиппов

Ивановский государственный химико-технологический университет

编辑信件的主要联系方式.
Email: filippov@isuct.ru
Россия, 153000, Иваново, Шереметевский пр-т, 7

参考

  1. Bhattacharjee S., Jang M.-S., Kwon H.-J. // Catal. Surv. Asia. 2014. V. 18. P. 101. https://doi.org/10.1007/s10563-014-9169-8
  2. Evans J.D., Garai B., Reinsch H et al. // Coord. Chem. Rev. 2019. V. 380. P. 378. https://doi.org/10.1016/j.ccr.2018.10.002
  3. Zhu Q.L., Xu Q. // Chem. Soc. Rev. 2014. V. 43. P. 5468. https://doi.org/10.1039/C3CS60472A
  4. Phan A.N.H., Doonan C.J., Uribe-Romo F.J. et al. // Acc. Chem. Res. 2010. V. 1. P. 58. https://doi.org/10.1021/ar900116g
  5. Xianbin Liu, Tiantian Liang, Rongtao Zhang et al. // ACS Appl. Mater. Interfaces. 2020. V. 13. P. 9643. https://doi.org/10.1021/acsami.0c21486
  6. Voronina A.A., Tarasyuk I.A., Marfin Y.S. et al. // J. Non-Cryst. Solids. 2014. V. 406. P. 5. https://doi.org/10.1016/j.jnoncrysol.2014.09.009
  7. Tarasyuk I.A., Kuzmin I.A., Marfin Y.S. et al. // Synth. Met. 2016. V. 217. P. 189. https://doi.org/10.1016/j.synthmet.2016.03.037
  8. Vashurin A., Marfin Y., Tarasyuk I. et al. // Appl. Organomet. Chem. 2018. V. 32. https://doi.org/10.1002/aoc.4482
  9. Konnerth H., Matsagar B.M., Chen S.S. et al. // Coord. Chem. Rev. 2020. V. 416. https://doi.org/10.1016/j.ccr.2020.213319
  10. Sharanyakanth P.S., Mahendran R. // Trends Food Sci. Technol. 2020. V. 104. P. 102. https://doi.org/10.1016/j.tifs.2020.08.004
  11. Jie Yang, Ying-Wei Yang // Small. 2020. V. 16. https://doi.org/10.1002/smll.201906846
  12. Фуфаева В.А., Филиппов Д.В. // Изв. вузов. Химия и хим. технология. 2021. Т. 64. С. 24. https://doi.org/10.6060/ivkkt.20216405.6354
  13. Xu G.-R., An Z.-H., Xu K. et al. // Coord. Chem. Rev. 2021. V. 427. P. 213554. https://doi.org/10.1016/j.ccr.2020.213554
  14. Гордиенко П.С., Шабалин И.А., Ярусова С.Б. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1326.
  15. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369.https://doi.org/10.1016/j.chemosphere.2020.127369
  16. Yajie Chen, Xue Bai, Zhengfang Ye. // Nanomaterials. V. 10. P. 1481. https://doi.org/10.3390/nano10081481
  17. Филиппов Д.В., Фуфаева В.А., Шепелев М.В. // Журн. неорган. химии. 2022. Т. 67. № 3. С. 397. https://doi.org/10.31857/S0044457X22030084
  18. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369. https://doi.org/10.1016/j.chemosphere.2020.127369
  19. Abdi J., Abedini H. // Chem. Eng. J. 2020. V. 400. P. 125862. https://doi.org/10.1016/j.cej.2020.125862
  20. Shen B., Wang B., Zhu L. et al. // Nanomaterials. 2020. V. 10. P. 1636. https://doi.org/10.3390/nano10091636
  21. Begum J., Hussain Z., Noor T. // Mater. Res. Express. 2020. V. 7. P. 015083. https://doi.org/10.1088/2053-1591/ab6b66
  22. Manousi N., Giannakoudakis D.A., Rosenberg E. et al. // Molecules. 2019. V. 24. P. 4605. https://doi.org/10.3390/molecules24244605
  23. Hidalgo T., Simón-Vázquez R., González-Fernández A., Horcajada P. // Chem. Sci. 2022. V. 13. P. 934. https://doi.org/10.1039/D1SC04112F
  24. Zhang Y., Jia Y., Li M., Hou L. // Sci. Rep. 2018. V. 8. P. 1. https://doi.org/10.1038/s41598-018-28015-7
  25. Lashgari M., Yamini Y. // Talanta. 2019. V. 191. P. 283.
  26. Rasheed T., Ahmad A., Bilal M. et al. // Chemosphere. 2020. V. 259. P. 127369. https://doi.org/10.1016/j.chemosphere.2020.127369

补充文件

附件文件
动作
1. JATS XML
2.

下载 (203KB)
3.

下载 (1MB)
4.

下载 (85KB)
5.

下载 (88KB)
6.

下载 (43KB)

版权所有 © А.А. Карасева, Д.В. Филиппов, А.С. Вашурин, 2023

##common.cookie##