Особенности кинетики и динамики сорбции целевой молекулы глюкозы молекулярно импринтированным полимером

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследовано влияние импринтирования полимерной матрицы на основе этиленгликоль диметакрилата на кинетику и динамику связывания целевой молекулы глюкозы. Установлен вклад акта адсорбции в кинетику сорбции целевого сорбтива молекулярно импринтированным полимером. Выявлено смешаннодиффузионное лимитирование массопереноса и совместная адсорбция молекул глюкозы при сорбции как импринтированными, так и неимпринтированными полимерными гранулами. Показано увеличение скорости связывания и доступности сорбционных центров импринтированного полимера, а также реализация регулярного режима фронтальной сорбции.

Об авторах

И. С. Гаркушина

Институт высокомолекулярных соединений РАН

Email: irin-g16@yandex.ru
Россия, 199004, Санкт-Петербург

А. С. Панюта

Институт высокомолекулярных соединений РАН

Автор, ответственный за переписку.
Email: irin-g16@yandex.ru
Россия, 199004, Санкт-Петербург

Список литературы

  1. Wulff G., Sarhan A. // Angew. Chem. Int. Ed. in English. 1972. V. 11. I. 4. P. 341. https://doi.org/10.1002/anie.197203341.
  2. Wulff G., Grobe-Einsler R., Vesper W., Sarhan A. // Die Makromol. Chemie. 1977. V. 178. I. 10 P. 2817. https://doi.org/10.1002/macp.1977.021781005
  3. Arshady R., Mosbach K. // Die Makromol. Chemie. 1981. V. 182. I. 2. P. 687. https://doi.org/10.1002/macp.1981.021820240
  4. Asadi E., Abdouss M., Leblanc R.M. et al. // Polymer. 2016. V. 97. P. 226. https://doi.org/10.1016/j.polymer.2016.05.031
  5. Mayes A.G., Whitcombe M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers // Adv. Drug Deliv. Rev. 2005. V. 57. I. 12. P. 1742. https://doi.org/10.1016/J.ADDR.2005.07.011
  6. Podjava A., Šilaks A. // J. Liq. Chromatogr. Relat. Technol. V. 44. I. 3–4. P. 181. https://doi.org/10.1080/10826076.2021.1874980
  7. Aguilar J.F.F., Miranda J.M., Rodriguez J.A. et al. // J. Polym. Res. 2020. V. 27. I. 7. Art. 176. https://doi.org/10.1007/s10965-020-02139-9
  8. Madikizela L.M., Nomngongo P.N., Pakade V.E. // J. Pharm. Biomed. Anal. 2022. V. 208. P. 114447. https://doi.org/10.1016/J.JPBA.2021.114447
  9. Захарова М.А., Полякова И.В., Грошикова А.Р. и др. // НТВ СПбГПУ. Физико-математические науки. 2011. Т. 4. № 3. С. 127.
  10. Willaman J.J., Davison F.R. // J. Agric. Res. 1924. V. 28. I. 5. P. 479.
  11. Boyd G.E., Adamson A.W., Myers L.S. // J. Am. Chem. Soc. 1947. V. 69. I. 11. P. 2836. https://doi.org/10.1021/ja01203a066
  12. Lagergren S. Zur Theorie der sogenannten Adsorption gelöster Stoffe // undefined. Springer-Verlag, 1907. V. 2. № 1. P. 15.
  13. Jasper E.E., Ajibola V.O., Onwuka J.C. // Appl. Water Sci. 2020. V. 10. I. 6. P. 1. https://doi.org/10.1007/s13201-020-01218-y
  14. Ho Y.S., McKay G. // Process Biochem. 1999. V. 34. I. 5. P. 451.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (55KB)
3.

Скачать (33KB)

© И.С. Гаркушина, А.С. Панюта, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах