Heat capacity and thermodynamic functions of lutetium titanate Lu2Ti2O7
- Autores: Gagarin P.G.1, Guskov A.V.1, Guskov V.N.1, Khoroshilov A.V.1, Gavrichev K.S.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 99, Nº 4 (2025)
- Páginas: 537-548
- Seção: CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
- ##submission.dateSubmitted##: 22.08.2025
- ##submission.datePublished##: 15.04.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/305545
- DOI: https://doi.org/10.31857/S0044453725040023
- EDN: https://elibrary.ru/fomgyh
- ID: 305545
Citar
Resumo
Palavras-chave
Sobre autores
P. Gagarin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Leninsky prospect, 31, Moscow, 119991, Russia
A. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesLeninsky prospect, 31, Moscow, 119991, Russia
V. Guskov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesLeninsky prospect, 31, Moscow, 119991, Russia
A. Khoroshilov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesLeninsky prospect, 31, Moscow, 119991, Russia
K. Gavrichev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesLeninsky prospect, 31, Moscow, 119991, Russia
Bibliografia
- Knop O., Brisse F., Castelliz L. // Can. J. Chem. 1969. V. 47. P. 971. https://doi.org/10.1139/v69-155
- Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Vassen R., Jarligo M.O., Steinke T., et al. // Surf. Coat. Technol. 2010. V. 205. P. 938. doi: 10.1016/j.surfcoat.2010.08.151
- Guo H., Zhang K., Li Y. // Ceram. Int. 2024. V. 50. P. 21859. https://doi.org/10.1016/j.ceramint.2024.03.298
- Steiner H.-J., Middleton P.H., Steele B.C.H. // J. Alloys Compd. 1993. V.190. P. 279. https://doi.org/10.1016/0925-8388(93)90412-G
- Bonville P., Petit S., Mirebeau I., et al. // J. Phys.: Cond. Matter. 2013. V. 25(27). P. 275601. doi: 10.1088/0953—8984/25/27/275601
- Kim H.G., Hwang D.W., Bae S.W., et al. // Catal. Lett. 2003. V. 91. P. 193. https://doi.org/10.1023/B: CATL.0000007154.30343.23
- Yadav P.K., Upadhyay Ch. // J. Supercond. Novel Magn. 2019. V. 32. P. 2267. https://doi.org/10.1007/s10948-018-4957-4
- Balachandran U., Eror N.G. // J. Mater. Res. 1989. V. 4(6). P. 1525. doi: 10.1557/JMR.1989.1525
- Johnson D.A., Westrum E.F., Jr. // Thermochim. Acta. 1994. V. 245. P. 173. https://doi.org/10.1016/0040-6031(94)85077-1
- Raju N.P., Dion M., Gingras M.J.P., et al. // Phys. Rev. B. 1999. V. 59(22). P. 14489. doi: https://doi.org/10.1103/PhysRevB.59.14489
- Ramirez A.P., Shastry B.S., Hayashi A., et al. // Phys. Rev. Lett. 2002. V. 89(6). P. 067202—1. doi: 10.1103/PhysRevLett.89.067202
- Saha S., Singh S., Dkhil B., et al. // Phys. Rev. B. 2008. V. 78. P. 214102. doi: 10.1103/PhysRevB.78.214102
- Bissengalieva M.R., Knyazev A.V., Bespyatov M.A., et al. // J. Chem. Thermodyn. 2022. V. 165. P. 106646. https://doi.org/10.1016/j.jct.2021.106646
- Dasgupta P., Jana Y.M., Nag Chattopadhyay A., et al. // J. Phys. Chem. Solids. 2007. V. 68. P. 347. https://doi.org/10.1016/j.jpcs.2006.11.022
- Gagarin P.G., Guskov A.V., Khoroshilov A.V., et al. // Russ. J. Phys. Chem. A. 2024. V. 98, No. 9. P. 1883. doi: 10.1134/S0036024424700973
- Denisova L.T., Chumilina L.G., Ryabov V.V., et al. // Inorg. Mater. 2019. V. 55. No. 5. P. 477. doi: 10.1134/S0020168519050029
- Helean K.B., Ushakov S.V., Brown C.E., et al. // J. Solid State Chem. 2004. V. 177. P. 1858. doi: 10.1016/j.jssc.2004.01.009
- Reznitskii L.A. // Neorg. Mater. 1993. V. 29 (9). P. 1310.
- Gagarin, P. G., Guskov, A. V., Guskov, et al. // Russ. J. of Inorganic Chemistry. https://doi.org/10.1134/S0036023624602046
- Rosen P.F., Woodfield B.F. // J. Chem. Thermodyn.2020. V. 141. P. 105974. doi: https://doi.org/10.1016/j.jct.2019.105974
- Bissengaliyeva M.R., Gogol D.B., Taymasova Sh.T., Bekturganov N.S. // J. Chem. Eng. Data. 2011. V. 56. P. 195—204. https://doi.org/10.1021/je100658y
- Prohaska T., Irrgeher J., Benefield J., et al. // Pure and Applied Chemistry. 2022. V. 94(5). P. 573. https://doi.org/10.1515/pac-2019-0603
- Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 16. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
- Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029.
- Leitner J., Voňka P., Sedmidubský D., Svoboda P. // Thermochim. Acta. 2010. V. 497. P. 7. doi: 10.1016/j.tca.2009.08.002
- Smith S.J., Stevens R., Liu Sh., et al. // Am. Mineral. 2009. V. 94. P. 236. doi: 10.2138/am.2009.3050236
- Konings R.J.M., Beneš O., Kovács A., et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. doi: 10.1063/1.4825256
- Ryumin M.A., Tyurin A.V., Khoroshilov A.V., et al. // Russ. J. Inorg. Chem. 2024. doi: 10.1134/S0036023624601132.
- Westrum E.F. // J. Chem. Thermodynamics. 1983. V. 15. P. 305—325. https://doi.org/10.1016/0021-9614(83)90060-5
- Kitagawa K., Higashinaka R., Ishida K., et al. // Phys. Rev. B. 2008. V. 77. P. 214403. doi: 10.1103/PhysRevB.77.214403
- Gruber J., Chirico R.D., Westrum E.F., Jr. // J. Chem. Phys. 1982. V. 76(9). P. 4600—4605. https://doi.org/10.1063/1.443538
- Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Russ. J. Phys. Chem. A. 2022. V. 96(9). P. 1831. doi: 10.1134/S003602442209014X
- Guskov A.V., Gagarin P.G., Guskov V.N., et al. // Dokl. Phys. Chem. 2021. V. 500. Part 2. P. 105—109. doi: 10.1134/S001250162110002X
Arquivos suplementares
