An Equation of State of Corundum Based on Planck–Einstein Functions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility of constructing the equation of state of a crystalline substance based on a linear combination of the Planck–Einstein functions is shown using the example of corundum α-Al2O3. Two versions of the corundum equation of state are obtained on the basis of functions F(V,T) and G(P,T) as a result of the self-consistency of the heat capacity values, the enthalpy increment, PVT data, the coefficient of thermal expansion, and the adiabatic modulus of elasticity. Both equations provide an acceptable description of the above properties in a wide range of variables (up to a pressure of 165 GPa and a temperature of 2250 K).

Sobre autores

A. Perevoshchikov

Faculty of Chemistry, Lomonosov Moscow State University

Email: ira@td.chem.msu.ru
119991, Moscow, Russia

N. Kovalenko

Faculty of Chemistry, Lomonosov Moscow State University

Email: ira@td.chem.msu.ru
119991, Moscow, Russia

I. Uspenskaya

Faculty of Chemistry, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: ira@td.chem.msu.ru
119991, Moscow, Russia

Bibliografia

  1. Перевощиков А.В., Максимов А.И., Бабаян И.И. и др. // Журн. неорган. химии 2023. Т. 68. № 2. https://doi.org/10.31857/S0044457X22601407
  2. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data 2013. V. 58. № 7. P. 2083. https://doi.org/10.1021/je400316m
  3. Khvan A.V., Uspenskaya I.A., Aristova N.M. et al. // Calphad 2020. V. 68. P. 101724. https://doi.org/10.1016/j.calphad.2019.101724
  4. Khvan A.V., Dinsdale A.T., Uspenskaya I.A. et al. // Calphad 2018. V. 60. P. 144. https://doi.org/10.1016/j.calphad.2017.12.008
  5. Uspenskaya I.A., Kulikov L.A. // J. Chem. Eng. Data 2015. V. 60. № 8. P. 2320. https://doi.org/10.1021/acs.jced.5b00217
  6. D’Amour H., Schiferl D., Denner W. et al. // J. Appl. Phys. 1978. V. 49. № 8. P. 4411. https://doi.org/10.1063/1.325494
  7. Archer D.G. // J. Phys. Chem. Ref. Data. 1993. V. 22. № 6. P. 1441. https://doi.org/10.1063/1.555931
  8. Mao H.K., Bell P.M., Shaner J.W. et al. // J. Appl. Phys. 1978. V. 49. № 6. P. 3276. https://doi.org/10.1063/1.325277
  9. Levin I., Brandon D. // J. Am. Ceram. Soc. 1998. V. 81. № 8. P. 1995. https://doi.org/10.1111/j.1151-2916.1998.tb02581.x
  10. Fiquet G., Richet P., Montagnac G. // Phys. Chem. Minerals 1999. V. 27. № 2. P. 103. https://doi.org/10.1007/s002690050246
  11. Perevoshchikov A.V., Maksimov A.I., Kovalenko N.A. et al. // Russ. J. Phys. Chem. 2022. V. 96. № 10. P. 2059. https://doi.org/10.1134/S0036024422100259
  12. Huang Y.K., Chow C.Y. // J. Phys. D: Appl. Phys 1974. V. 7. № 15. P. 2021. https://doi.org/10.1088/0022-3727/7/15/305
  13. Finger L.W., Hazen R.M. // J. Appl. Phys. 1978. V. 49. № 12. P. 5823. https://doi.org/10.1063/1.324598
  14. Dewaele A., Torrent M. // Phys. Rev. B 2013. V. 88. № 6. P. 064107. https://doi.org/10.1103/PhysRevB.88.064107
  15. Dorogokupets P.I., Sokolova T.S., Dymshits A.M. et al. // Geodyn. Tectonophys. 2016. V. 7. № 3. P. 459. https://doi.org/10.5800/GT-2016-7-3-0217
  16. Grevel K.D., Burchard M., Faßhauer D.W. et al. // J. Geophys. Res. Solid Earth 2000. V. 105. № B12. P. 27877. https://doi.org/10.1029/2000jb900323
  17. Goto T., Anderson O.L., Ohno I. et al. // J. Geophys. Res. 1989. V. 94. № B6. P. 7588. https://doi.org/10.1029/JB094iB06p07588
  18. Richet P., Xu J.-A., Mao H.-K. // Phys. Chem. Minerals 1988. V. 16. P. 207. https://doi.org/10.1007/BF00220687
  19. Krupka K.M., Robie R.A., Hemingway B.S. // Am. Mineral 1979. V. 64. P. 86.
  20. Andrews J.T.S., Norton P.A., Westrum E.F. // J. Chem. Thermodynamics 1978. V. 10. P. 949. https://doi.org/10.1016/0021-9614(78)90056-3
  21. Inaba A. // J. Chem. Thermodynamics 1983. V. 15. P. 1137. https://doi.org/10.1016/0021-9614(83)90004-6
  22. Fugate R.Q., Swenson C.A. // J. Appl. Phys. 1969. V. 40. № 7. P. 3034. https://doi.org/10.1063/1.1658118
  23. Furukawa G.T., Douglas T.B., Mccoskey R.E. et al. // J. Res. Natl. Bur. Stand. 1956. V. 57. № 2. https://doi.org/10.6028/JRES.057.008
  24. Tan Z., Yin A., Chen S. et al. // Thermochim. Acta 1988. V. 123. P. 105. https://doi.org/10.1016/0040-6031(88)80014-5
  25. Tan Z.-C., Shi Q., Liu B.-P. et al. // J. Therm. Anal. Calorim. 2008. V. 92. № 2. P. 367. https://doi.org/10.1007/s10973-007-8954-2
  26. Tan Z., Ye J., Sun Y. et al. // Thermochim. Acta 1991. V. 183. P. 29. https://doi.org/10.1016/0040-6031(91)80442-L
  27. Tan Z., Zhang J., Meng S. et al. // Sci. China, Ser. B. 1999. V. 42. № 4. P. 382. https://doi.org/10.1007/BF02873967
  28. Sorai M., Kaji K., Kaneko Y. // J. Chem. Thermodynamics 1992. V. 24. P. 167. https://doi.org/10.1016/S0021-9614(05)80046-1
  29. Ditmars D.A., Douglas T.B. // J. Res. Natl. Bur. Stand. A Phys. Chem. 1971. V. 75. № 5. P. 401. https://doi.org/10.6028/JRES.075A.031
  30. Richet P., Denielou L., Petitet J.P. et al. // Geochim. Cosmochim. Acta 1982. V. 46. P. 2639. https://doi.org/10.1016/0016-7037(82)90383-0
  31. Ditmars D.A., Ishihara S., Chang S.S. et al. // J. Res. Natl. Bur. Stand. 1982. V. 87. № 2. P. 159. https://doi.org/10.6028/jres.087.012
  32. Richet P., Fiquet G. // J. Geophys. Res. 1991. V. 96. № B1. P. 445. https://doi.org/10.1029/90JB02172
  33. Петухов В., Чеховской В., Багдасаров Х. // Теплофизика высоких температур 1973. Т. 11. № 5. C. 1083.
  34. Aldebert P., Traverse J.-P. // High Temp. High Pres. 1984. V. 16. № 2. P. 127.
  35. White G.K., Minges M.L., Castanet R.B. et al. // Int. J. Thermophys. 1997. V. 18. № 5. P. 1269. https://doi.org/10.1007/BF02575261
  36. Schauer A. // Can. J. Phys. 1965. V. 43. P. 523. https://doi.org/10.1139/p65-049
  37. Wachtman J.B., Scuderi T.G., Cleek G.W. // J. Am. Ceram. Soc. 1962. V. 45. № 7. P. 319. https://doi.org/10.1111/j.1151-2916.1962.tb11159.x
  38. Dubrovinsky L., Saxená Lazor S.P., Dubrovinsky L.S. et al. // Phys. Chem. Minerals 1998. V. 25. P. 434. https://doi.org/10.1007/s002690050133
  39. Tarumi R., Ledbetter H., Ogi H. et al. // Philos. Mag. 2013. V. 93. № 36. P. 4532. https://doi.org/10.1080/14786435.2013.837225
  40. Dubrovinsky L.S., Saxena S.K. // Phys. Chem. Minerals 1997. V. 24. № 8. P. 547. https://doi.org/10.1007/s002690050070
  41. Sato Y., Akimoto S.I. // J. Appl. Phys. 1979. V. 50. № 8. P. 5285. https://doi.org/10.1063/1.326625

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (110KB)
3.

Baixar (107KB)
4.

Baixar (62KB)

Declaração de direitos autorais © А.В. Перевощиков, Н.А. Коваленко, И.А. Успенская, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies