Acid-base properties of the surface of silicon oxycarbon composites based on activated carbon and silica gel and their effect on dye adsorption

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mechanochemical synthesis of silicon-oxygen-carbon composites was carried out using mixtures of activated carbon and silica gel in various mass ratios. The resulting materials were found to possess a uniform amorphous structure and well-developed porosity. It was shown that the acid-base surface properties are governed by phenolic, carboxyl, and silanol groups of different configurations, with the dominant contribution coming from groups with pKa values of 8.5- 12. An increase in the concentration of these groups accompanied by a decrease in the concentration of groups with pKa 0-5 leads to a higher pH at the point of zero charge. It was revealed that, due to electrostatic interactions, the synthesized composites adsorb methyl orange more effectively than methylene blue. The highest adsorption capacity toward methyl orange (286.2 mg/g) was observed for the sample obtained from the mixture with an activated carbon-to-silica gel mass ratio of 1:2.

Sobre autores

I. Grishin

Ivanovo State University of Chemistry and Technology

Email: grish.in.03.97@gmail.com
Ivanovo, Russia

N. Smirnov

Ivanovo State University of Chemistry and Technology

Email: grish.in.03.97@gmail.com
Ivanovo, Russia

D. Yashkova

Krestov Institute of Solution Chemistry, Russian Academy of Sciences

Email: grish.in.03.97@gmail.com
Ivanovo, Russia

Bibliografia

  1. Stabler C., Ionescu E., Graczyk-Zajac M., et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 4817. doi: 10.1111/jace.15932.
  2. Widgeon S.J., Sen S., Mera G., et al. // Chem. Mat. 2010. V. 22. P. 6221. doi: 10.1021/cm1021432.
  3. Marchewka J., Jelen P., Rutkowska I., et al. // Materials. 2021. V. 14. P. 1340. doi: 10.3390/ma14061340.
  4. Mera G., Gallei M., Bernard S., et al. // Nanomater. 2015. V. 5. P. 468. doi: 10.3390/nano5020468.
  5. Lu K. // Mater. Sci. Eng.: R: Rep. 2015. V. 97. P. 23. doi: 10.1016/j.mser.2015.09.001.
  6. Adam M., Vakifahmetoglu C., Colombo P., et al. // J. Am. Ceram. Soc. 2013. V. 97. № 3. P. 959. doi: 10.1111/jace.12708.
  7. Tamayo A., Mazo M.A., Ruiz-Caro R., et al. // Chem. Eng. J. 2015. V. 280. P. 165—174. doi: 10.1016/j.cej.2015.05.111.
  8. Liao N., Zheng B., Zhang M., Xue W. // Int. J. Hydrog. Energy. 2019. Vol. 44. № 48. P. 26679. doi: 10.1016/j.ijhydene.2019.08.098.
  9. Graczyk-Zajac M., Vrankovic D., Waleska P., et al. // J. Mater. Chem. A. 2018. V. 6. P. 93. DOI: doi.org/10.1039/C7TA09236A.
  10. Pan J., Shen W., Zhao Y., et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2019. V. 584. P. 124041. doi: 10.1016/j.colsurfa.2019.124041.
  11. Pan J., Ren J., Xie Y., et al. // Res. Chem. Intermed. 2017. V. 43. P. 3813. doi: 10.1007/s11164-016-2850-y.
  12. Bruzzoniti M.C., Appendini M., Onida B., et al. // Environ. Sci. Pollut. Res. 2018. V. 25. N. 11. P. 10619. doi: 10.1007/s11356-018-1367-x.
  13. Yu Z., Feng Y., Li S., Pei Y. // J. Eur. Ceram. Soc. 2016. V. 36. N. 15. P. 3627. doi: 10.1016/j.jeucercamsc.2016.02.003.
  14. Meng L., Zhang X., Tang Y., et al. // Sci Rep. 2015. V. 5. P. 7910. doi: 10.1038/srep07910.
  15. Simões dos Reis G., Sampaio C.H., Lima E.C., Wilhelm M. // Colloids Surf. A: Physicochem. Eng. Asp. 2016. V. 497. P. 304. doi: 10.1016/j.colsurfa.2016.03.021.
  16. Wasan Awin E., Lale A., Kumar K., et al. // Materials. 2018. V. 11. N. 3. P. 362. doi: 10.3390/ma11030362.
  17. Hojamberdiev M., Prasad R.M., Morita K., et al. // Micropor. Mesopor. Mat. 2012. V. 151. P. 330-338. doi: 10.1016/j.micromeso.2011.10.015.
  18. Wen Q., Yu Z., Riedel R. // Prog. Mater. Sci. 2020. V. 109. P. 100623. doi: 10.1016/j.pmatsci.2019.100623.
  19. Yu S., Tu R., Goto T. // J. Eur. Ceram. Soc. 2016. V. 36. P. 403. doi: 10.1016/j.jeucercamsc.2015.10.029.
  20. Zare A., Su Q., Gigax J., et al. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 446. P. 10. doi: 10.1016/j.nimb.2019.03.009.
  21. Grishin I.S., Smirnov N.N., Smirnova D.N. // Inorg. Mater. Appl. Res. 2023. V. 14. P. 800. doi: 10.1134/S2075113323030152.
  22. Gorgulho H.F., Mesquita J.P., Gonçalves F., et al. // Carbon. 2008. V. 46. No. 12. P. 1544. doi: 10.1016/j.carbon.2008.06.045.
  23. Feng J., Xiao Y., Jiang Y., Feng J. // Ceram. Int. 2015. V. 41. P. 5281. doi: 10.1016/j.ceramint.2014.11.111.
  24. Mazo M.A., Tamayo A., Rubio J. // J. Eur. Ceram. Soc. 2016. V. 36. N. 10. P. 2443. doi: 10.1016/j.jeucercamsc.2016.03.012.
  25. Guo S., Zou Z., Chen Y., et al. // Environ. Pollut. 2023. V. 320. P. 121060. doi: 10.1016/j.envpol.2023.121060.
  26. Liu X., Cheng J., Lu X., Wang R. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 26909. doi: 10.1039/c4cp02955k.
  27. Rimola A., Costa D., Sodupe M., et al. // Chem. Rev. 2013. V. 113. N. 6. P. 4216. doi: 10.1021/cr3003054.
  28. Lee H., Fiore S., Berruti F. // Biomass and Bioenergy. 2024. V. 191. P. 107446. doi: 10.1016/j.biombioe.2024.107446.
  29. Eleryan A.A., Hassaan M., Altaf N.M., et al. // Sci. Rep. 2024. V. 14. N. 1. P. 13585. doi: 10.1038/s41598-024-63510-0.
  30. Ouedrhiri A., Lghazi Y., Bahar J., et al. // Phys. Chem. Res. 2022. V. 10. N. 3. P. 301. doi: 10.22036/PCR.2021.303554.1968.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).