Structural Mechanisms of Phase Transitions of Water Ices II, IV, and V to Metastable Ice Ic at Atmospheric Pressure

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Model structural mechanisms of transitions between crystalline water ices II → Ic, IV → Ic, and V → Ic are proposed. It is established that in the proposed II → Ic transition mechanism, one of the three systems of infinite parallel chains consisting of adjacent hexacycles and running along the 〈0001〉 direction of ice II is preserved, and these chains become parallel to one of the 〈211〉 directions of ice Ic. The proposed mechanism of the V → Ic transition preserves both systems of infinite parallel chains of adjacent hexacycles extended along the [101] and [10–1] directions of ice V; in ice Ic, they run along two directions 〈211〉 parallel to the same {120} plane. According to the proposed mechanism of the IV → Ic transition, puckered surfaces of hexacycles are retained. In all three cases, 3/4 of all hydrogen bonds are retained during the transition, and 1/4 of the bonds are rearranged. It is shown that the structures of ices II, IV, and V consist of the same structural element, which is slightly modified in ice V.

Авторлар туралы

E. Zheligovskaya

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lmm@phyche.ac.ru
119071, Moscow, Russia

Әдебиет тізімі

  1. Памяти Н.А. Бульенкова // Журн. физ. химии. 2022. Т. 96. № 6. С. 917.
  2. Бульенков Н.А. // Биофизика. 1991. Т. 36. № 2. С. 181.
  3. Бульенков Н.А. // Там же. 2005. Т. 50. № 5. С. 934.
  4. Бульенков Н.А. // Кристаллография. 2011. Т. 56. № 4. С. 729.
  5. Bulienkov N.A., Zheligovskaya E.A. // Struct. Chem. 2017. V. 28. № 1. P. 75. https://doi.org/10.1007/s11224-016-0837-3
  6. Zheligovskaya E.A., Bulienkov N.A. // Physics of Wave Phenomena. 2021. V. 29. No. 2. P. 141. https://doi.org/10.3103/S1541308X21020163
  7. Бульенков Н.А. // Докл. АН СССР. 1985. Т. 284. № 6. С. 1392. (Физическая химия)
  8. Желиговская Е.А., Бульенков Н.А. // Кристаллография. 2008. Т. 53. № 6. С. 1126.
  9. Желиговская Е.А., Маленков Г.Г. // Успехи химии. 2006. Т. 75. № 1. С. 64.
  10. del Rosso L., Celli M., Grazzi F. et al. // Nature Materials. 2020. V. 19. P. 663. https://doi.org/10.1038/s41563-020-0606-y
  11. Salzmann C.G. // J. Chem. Phys. 2019. V. 150. P. 060901 (1–10). https://doi.org/10.1063/1.5085163
  12. Komatsu K., Machida S., Noritake F. et al. // Nature Communications. 2020. V. 11. P. 464 (1–5). https://doi.org/10.1038/s41467-020-14346-5
  13. Желиговская Е.А. // Кристаллография. 2015. Т. 60. № 5. С. 779.
  14. Kamb B. // Sci. 1965. V. 150. P. 205. https://doi.org/10.1126/science.150.3693.205
  15. Kamb B. // Acta Cryst. 1964. V. 17. P. 1437. https://doi.org/10.1107/S0365110X64003553
  16. Engelhardt H., Kamb B. // J. Chem. Phys. 1981. V. 75. P. 5887. https://doi.org/10.1063/1.442040
  17. Kamb B., Prakash A., Knobler C. // Acta Cryst. 1967. V. 22. P. 706. https://doi.org/10.1107/S0365110X67001409

Қосымша файлдар


© Е.А. Желиговская, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>