Structural Mechanisms of Phase Transitions of Water Ices II, IV, and V to Metastable Ice Ic at Atmospheric Pressure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Model structural mechanisms of transitions between crystalline water ices II → Ic, IV → Ic, and V → Ic are proposed. It is established that in the proposed II → Ic transition mechanism, one of the three systems of infinite parallel chains consisting of adjacent hexacycles and running along the 〈0001〉 direction of ice II is preserved, and these chains become parallel to one of the 〈211〉 directions of ice Ic. The proposed mechanism of the V → Ic transition preserves both systems of infinite parallel chains of adjacent hexacycles extended along the [101] and [10–1] directions of ice V; in ice Ic, they run along two directions 〈211〉 parallel to the same {120} plane. According to the proposed mechanism of the IV → Ic transition, puckered surfaces of hexacycles are retained. In all three cases, 3/4 of all hydrogen bonds are retained during the transition, and 1/4 of the bonds are rearranged. It is shown that the structures of ices II, IV, and V consist of the same structural element, which is slightly modified in ice V.

About the authors

E. A. Zheligovskaya

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: lmm@phyche.ac.ru
119071, Moscow, Russia

References

  1. Памяти Н.А. Бульенкова // Журн. физ. химии. 2022. Т. 96. № 6. С. 917.
  2. Бульенков Н.А. // Биофизика. 1991. Т. 36. № 2. С. 181.
  3. Бульенков Н.А. // Там же. 2005. Т. 50. № 5. С. 934.
  4. Бульенков Н.А. // Кристаллография. 2011. Т. 56. № 4. С. 729.
  5. Bulienkov N.A., Zheligovskaya E.A. // Struct. Chem. 2017. V. 28. № 1. P. 75. https://doi.org/10.1007/s11224-016-0837-3
  6. Zheligovskaya E.A., Bulienkov N.A. // Physics of Wave Phenomena. 2021. V. 29. No. 2. P. 141. https://doi.org/10.3103/S1541308X21020163
  7. Бульенков Н.А. // Докл. АН СССР. 1985. Т. 284. № 6. С. 1392. (Физическая химия)
  8. Желиговская Е.А., Бульенков Н.А. // Кристаллография. 2008. Т. 53. № 6. С. 1126.
  9. Желиговская Е.А., Маленков Г.Г. // Успехи химии. 2006. Т. 75. № 1. С. 64.
  10. del Rosso L., Celli M., Grazzi F. et al. // Nature Materials. 2020. V. 19. P. 663. https://doi.org/10.1038/s41563-020-0606-y
  11. Salzmann C.G. // J. Chem. Phys. 2019. V. 150. P. 060901 (1–10). https://doi.org/10.1063/1.5085163
  12. Komatsu K., Machida S., Noritake F. et al. // Nature Communications. 2020. V. 11. P. 464 (1–5). https://doi.org/10.1038/s41467-020-14346-5
  13. Желиговская Е.А. // Кристаллография. 2015. Т. 60. № 5. С. 779.
  14. Kamb B. // Sci. 1965. V. 150. P. 205. https://doi.org/10.1126/science.150.3693.205
  15. Kamb B. // Acta Cryst. 1964. V. 17. P. 1437. https://doi.org/10.1107/S0365110X64003553
  16. Engelhardt H., Kamb B. // J. Chem. Phys. 1981. V. 75. P. 5887. https://doi.org/10.1063/1.442040
  17. Kamb B., Prakash A., Knobler C. // Acta Cryst. 1967. V. 22. P. 706. https://doi.org/10.1107/S0365110X67001409

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (743KB)
5.

Download (877KB)
6.

Download (984KB)

Copyright (c) 2023 Е.А. Желиговская

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies