Possible Ferromagnetism of a Nitrogen-Doped Carbon Material

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A nitrogen-doped carbon material (NDCM) is synthesized by grinding a graphene oxide–melamine mixture in a planetary mill in which the balls and the body are both made of zirconium dioxide. In addition to a narrow signal at g = 2.0034, the EPR spectrum of the NDCM exhibits a broad signal at g = 2.08. Studies with a magnetometer show the NDCM is presumably a ferromagnetic material with a saturation magnetization at room temperature of approximately 0.02 emu/g and a coercive force of 100 Oe.

About the authors

V. P. Vasiliev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

E. N. Kabachkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

A. V. Kulikov

142432, Chernogolovka, Moscow oblast, Russia

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Yu. G. Morozov

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Yu. M. Shulga

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

References

  1. Vasiliev V.P., Manzhos R.A., Krivenko A.G. et al. // Mendeleev Commun. 2021. V. 31. P. 529.
  2. Vasiliev V.P., Manzhos R.A., Kochergin V.K. et al. // Materials. 2022. V. 15. AID 821 (11p).
  3. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 1339.
  4. Lazar P., Mach R., Otyepka M. // J. Phys. Chem. C. 2019. V. 123. P. 10695.
  5. Wang B., Fielding A.J., Robert A.W. // Ibid. 2019. V. 123. P. 2556.
  6. Makarova T.L., Sundqvist B., Höhne R. et al. // Nature. 2001. V. 413. P. 716.
  7. Antonov V.E., Bashkin I.O., Khasanov S.S. et al. // J. Alloy. Compd. 2002. V. 330–332. P. 365.
  8. Wang Y., Huang Y., Song Y. et al. // Nano Letters. 2009. V. 9. P. 220.
  9. Ovchinnikov. A.A. // Dokl. (Proc.) Acad. Sci. USSR. 1977. V. 236. P. 928.
  10. Ovchinnikov A.A. // Theor. Chim. Acta. 1978. V. 47. P. 297.
  11. Ovchinnikov A.A., Shamovsky I.L. // J. Mol. Struct. (Theochem). 1991. V. 83. P. 133.
  12. Wang Y., Guo Y., Wang Z. et al. // ACS Nano. 2021. V. 15. P. 12069.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (54KB)
3.

Download (59KB)
4.

Download (36KB)
5.

Download (101KB)

Copyright (c) 2023 В.П. Васильев, Е.Н. Кабачков, А.В. Куликов, Ю.Г. Морозов, Ю.М. Шульга

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies