Membranes Based on PVdF–HFP and Alkylammonium Protic Ionic Liquids: Thermal and Transport Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Casting from a solution is used to obtain proton-conducting membranes based on a poly(vinylidenefluoride-co-hexafluoropropylene) copolymer doped with diethylammonium hydrogen sulfate and diethylammonium mesylate with different levels of doping. An IR spectroscopic study is performed, and the phase behavior of the obtained membranes, their thermal and electrochemical stability, and specific electrical conductivity are investigated. It is established that doping protic ionic liquids into PVdF-HFP copolymer reduces the degree of its crystallinity. It has been shown that all membranes are thermally stable up to 290–300°C, and their conductivity at 145°C varies from 1.6 to 10.4 mS cm–1, depending on the level of doping.

About the authors

L. E. Shmukler

Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: les@isc-ras.ru
153000, Ivanovo, Russia

Yu. A. Fadeeva

Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Email: les@isc-ras.ru
153045, Ivanovo, Russia

N. M. Stel’makh

Ivanovo State University of Chemical Technology

Email: les@isc-ras.ru
153000, Ivanovo, Russia

L. P. Safonova

Krestov Institute of Chemistry of Solutions, Russian Academy of Sciences

Author for correspondence.
Email: les@isc-ras.ru
153045, Ivanovo, Russia

References

  1. Nakamoto H., Watanabe M. // Chem. Commun. 2007. P. 2539. https://doi.org/10.1039/ B618953A
  2. Tang B., Gondosiswanto R., Hibbert D.B., Zhao C. // Electrochim. Acta 2019. V. 298. P. 413. https://doi.org/. electacta.2018.12.100
  3. Anouti M., Caillon-Caravanier M., Dridi Y. et al. // J. Phys. Chem. B 2008. V. 112. P. 13335. https://doi.org/10.1021/jp805992b
  4. Nair M.G., Mohapatra S.R. // Mater. Lett. 2019. V. 251. P. 148. https://doi.org/10.1016/j.matlet.2019.05.026
  5. Fernicola A., Panero S., Scrosati B. et al. // ChemPhysChem 2007. V. 8. P. 1103. https://doi.org/10.1002/cphc.200600782
  6. Wippermann K., Wackerl J., Lehnert W. et al. // J. Electrochem. Soc. 2015. V. 163. P. F25.https://doi.org/10.1149/2.0141602jes
  7. Lalia B.S., Yamada K., Hundal M.S. et al. // Appl. Phys. A 2009. V. 96. P. 661. https://doi.org/10.1007/s00339-009-5129-y
  8. Lee S.Y., Yasuda T., Watanabe M. // J. Power Sources 2010. V. 195. P. 5909. https://doi.org/10.1016/j.jpowsour.2009.11.045
  9. Nair M.G., Mohapatra S.R., Garda M.-R. et al. // Mater. Res. Express 2020. V. 7. P. 064005. https://doi.org/10.1088/2053-1591/ab9665
  10. Natha A.K., Talukdar R. // Int. J. Polym. Anal. Charact. 2020. V. 25. P. 597. https://doi.org/10.1080/1023666X.2020.1823732
  11. Cao Y., Tan Y.J., Li S. et al. // Nat. Electron 2019. V. 2. P. 75. https://doi.org/10.1038/s41928-019-0206-5
  12. Elwan H.A., Mamlouk M., Scott K. // J. Power Sources 2021. V. 484. P. 229197. https://doi.org/10.1016/j.jpowsour.2020.229197
  13. Siyahjani S., Oner S., Diker H. et al. // J. Power Sources 2020. V. 467. P. 228353. https://doi.org/10.1016/j.jpowsour.2020.228353
  14. Cao J.-H., Zhu B.-K., Xu Y.-Y. // J. Membr. Sci. 2006. V. 281. P. 446. https://doi.org/10.1016/j.memsci.2006.04.013
  15. Kumar S., Singh P.K., Agarwal D. et al. // Phys. Status Solidi A 2022. V. 219. P. 2100711. https://doi.org/10.1002/pssa.202100711
  16. Schauer J., Sikora A., Pliskova M. et al. // J. Membr. Sci. 2011. V. 367. P. 332. https://doi.org/10.1016/j.memsci.2010.11.018
  17. Singha M., Missan H.P.S. // ECS Trans. 2012. V. 50. P. 1199. https://doi.org/10.1149/05002.1199ecst
  18. Fernicola A., Panero S., Scrosati B. // J. Power Sources. 2008. V. 178. P. 591. https://doi.org/10.1016/j.jpowsour.2007.08.079
  19. Фадеева Ю.А., Кузьмин С.М., Шмуклер Л.Э., Сафонова Л.П. // Изв. АН. Сер. хим. 2021. № 1. С. 56. https://doi.org/10.1007/s11172-021-3056-z
  20. Malis J., Mazur P., Schauer J. et al. // Int. J. Hydrogen Energy 2013. V. 38. P. 4697. https://doi.org/10.1016/j.ijhydene.2013.01.126
  21. Terasawa N., Asaka K. // Mater. Today: Proc. 2020. V. 20. P. 265. https://doi.org/10.1016/j.matpr.2019.10.044
  22. Sharma S., Pathak D., Dhiman N., Kumar R. // Surf. Innovations 2017. V. 5. P. 251. https://doi.org/10.1680/jsuin.17.00019
  23. Shmukler L.E., Glushenkova E.V., Fadeeva Yu.A. et al. // J. Mol. Liq. 2019. V. 283. P. 338. https://doi.org/10.1016/j.molliq.2019.03.093
  24. Sharma S., Dhiman N., Pathak D., Kumar R. // Ionics 2016. V. 22. P. 1865. https://doi.org/10.1007/s11581-016-1721-2
  25. Xiang J., Chen R., Wu F. et al. // Electrochim. Acta 2011. V. 56. P. 7503. https://doi.org/10.1016/j.electacta.2011.06.103
  26. Шмуклер Л.Э., Федорова И.В., Груздев М.С. и др. // Изв. АН. Сер. хим. 2019. № 11. С. 2009. https://doi.org/10.1007/s11172-019-2660-7
  27. Cao Y., Mu T. // Ind. Eng. Chem. Res. 2014. V. 53. P. 8651. https://doi.org/10.1021/ie5009597
  28. Singh S.V.K., Singh R.K. // J. Mater. Chem. C 2015. V. 3. P. 7305. https://doi.org/10.1039/C5TC00940E
  29. Dzulkipli M.Z., Karim J., Ahmad A. et al. // Polymers 2021. V. 13. P. 1277. https://doi.org/10.3390/polym13081277
  30. Mishra R., Singh S.K., Gupta H. et al. // Energy Fuels 2021. V. 35. P. 15153. https://doi.org/10.1021/acs.energyfuels.1c02114
  31. Polat K. // Appl. Phys. A: Mater. Sci. Process. 2020. V. 126. P. 497. https://doi.org/10.1007/s00339-020-03698-w
  32. Pandey G.P., Hashmi S.A. // J. Power Sources 2009. V. 187. P. 627. https://doi.org/10.1016/j.jpowsour.2008.10.112
  33. Ribeiro M.C.C. // J. Mol. Liq. 2020. V. 310. P. 113178. https://doi.org/10.1016/j.molliq.2020.113178
  34. Franguelli F.P., Barta-Holló B., Petruševski V.M. et al. // J. Therm. Anal. Calorim. 2021. V. 145. P. 2907. https://doi.org/10.1007/s10973-020-09991-3
  35. Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. P. 15382. https://doi.org/10.1039/C7RA01267E
  36. Aravindan V., Vickraman P., Kumar T.P. // J. Non-Cryst. Solids 2008. V. 354. P. 3451. https://doi.org/10.1016/j.jnoncrysol.2008.03.009
  37. McGrath L.M., Jones J., Carey E., Rohan J.F. // ChemistryOpen 2019. V. 8. P. 1429. https://doi.org/10.1002/open.201900313
  38. Heacock R.A., Marion L. // Can. J. Chem. 1956. P. 1782. https://doi.org/10.1139/v56-231
  39. Zhong L., Parker S.F. // Roy. Soc. Open Sci. 2018. V. 5. P. 181363. https://doi.org/10.1098/rsos.181363
  40. Майоров В.Д., Волошенко Г.И., Либрович Н.Б. // Хим. физика. 2011. Т. 30. № 4. С. 43. https://doi.org/10.1134/S1990793111020357
  41. Ribeiro M.C.C. // J. Phys. Chem. B 2012. V. 116. P. 7281. https://doi.org/10.1021/jp302091d
  42. Sim L.N., Majid S.R., Arof A.K. // Vib. Spectrosc. 2012. V. 58. P. 57. https://doi.org/10.1016/j.vibspec.2011.11.005

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (42KB)
3.

Download (146KB)
4.

Download (262KB)
5.

Download (226KB)
6.

Download (6KB)
7.

Download (74KB)

Copyright (c) 2023 Л.Э. Шмуклер, Ю.А. Фадеева, Н.М. Стельмах, Л.П. Сафонова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies