EFFECT OF PROCESSING CONDITIONS ON THE PHYSICOCHEMICAL PROPERTIES OF IRON OXIDES FOR CATALYST PRODUCTION

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study explores the potential use of iron oxide powder — an industrial by- product from the manufacture of organic dyes — as a raw material for producing oxide catalysts. The physicochemical properties of the initial material and samples subjected to different types of treatment (mechanochemical activation, ultrasonic processing in oxalic acid solution) were investigated using X- ray diffraction, Mössbauer spectroscopy, scanning electron microscopy, and low- temperature nitrogen adsorption. It was established that optimal physicochemical characteristics are achieved through combined treatment: ultrasonic dissolution in oxalic acid followed by calcination at 425°C. Mechanochemical activation and ultrasonic processing enable the regulation of the composition and properties of the resulting oxides (substructural characteristics, dispersion, specific surface area, and porous structure). These processing methods allow for the formation of properties required for most catalysts used in the steam reforming of carbon monoxide and biomass pyrolysis.

About the authors

R. N Rumyantsev

Ivanovo State University of Chemistry and Technology

Email: rrr86@ya.ru
ORCID iD: 0000-0002-7763-2028
Ivanovo, Russia

T. E Nadtoka

Ivanovo State University of Chemistry and Technology

ORCID iD: 0009-0004-5080-3714
Ivanovo, Russia

N. S Pavlova

Ivanovo State University of Chemistry and Technology

ORCID iD: 0009-0004-7081-1586
Ivanovo, Russia

N. E Gordina

Ivanovo State University of Chemistry and Technology

ORCID iD: 0000-0002-1067-4688
Ivanovo, Russia

Thi Mai Huong Le

Vietnam Atomic Energy Institute

ORCID iD: 0000-0002-5742-5750
Hanoi, Vietnam

Tran Tho Dang

Hanoi University of Science and Technology

ORCID iD: 0009-0008-4532-6414
Hanoi, Vietnam

References

  1. Apostolescu N., Geiger B., Hizbullah K. et al. // Appl. Catal. B: Environ. 2006. V. 62. P. 104.
  2. Hamad K.I., Humadi J.I., Issa Y.S. et al. // Cleaner Eng. Technol. 2022. V. 11. P. 100570. https://doi.org/10.1016/j.clet.2022.100570
  3. Nuengmactha P., Kuyyoguy A., Porrawatkul P. et al. // Water Sci. Eng. 2023. V. 16. I. 3. P. 243. https://doi.org/10.1016/j.wse.2023.01.004
  4. Khan M.I., Alrobei H., Ilyas M. et al. // Surf. Rev. Lett. 2024. V. 16. I. 9. P. 941. https://doi.org/10.1166/sam.2024.4711
  5. Schlicher S., Schoch R., Prinz N. et al. // Catalysts. 2024. V. 14. P. 416. https://doi.org/10.3390/catal14070416
  6. Ma J., Mao X., Hu C. et al. // J. Am. Chem. Soc. 2024. V. 146. P. 970. https://doi.org/10.1021/jacs.3c11610.
  7. Humphreys J., Lan R., Tao S. // Adv. Energy Sustainability Res. 2021. V. 2. P. 2000043. https://doi.org/10.1002/aesr.202000043
  8. Liu H., Han W., Huo C. et al. // Catalysis Today. 2020. V. 355. P. 110. https://doi.org/10.1016/j.cattod.2019.10.031
  9. Hasany F.S., Abdurahman H.N., Sunarti A.R. et al. // Curr. Nanosci. 2013. V. 9. I. 5. P. 592. https://doi.org/10.2174/15734137113099990065.
  10. Lassoueda A., Dkhilb B., Gadri A. et al. // Results in Physics. 2017. V. 7. P. 3007.
  11. Khana I., Morishitaa S., Higashinaka R. et al. // J. Magn. Magn. Mat. 2021. V. 538. P. 168264. https://doi.org/10.1016/j.jmmm.2021.168264
  12. Mitar I., Guc L., Soldin Z. et al. // Crystals. 2021. V. 11. P. 383. https://doi.org/10.3390/cryst11040383
  13. Calderon Bedoya P.A., Botta P.M., Bercoff P.G. et al. // J. Alloys Compd. 2023. V. 939. P. 168720. https://doi.org/10.1016/j.jallcom.2023.168720
  14. Ogbezode J.E., Offia-Kalu N.E., Bello A. et al. // JALMES. 2024. V. 7. P. 100103. https://doi.org/10.1016/j.jalmes.2024.100103
  15. Лапшин М.А., Румянцев Р.Н., Ильин А.А. и др. // ЖПХ. 2017. Т. 90. № 7. С. 853.
  16. Pepper R.A., Couperthwaite S.J., Millar G.J. et al. // J. Environ. Chem. Eng. 2017. V. 5. I. 3. P. 2200.
  17. Румянцев Р.Н., Ильин А.А., Ильин А.П. // Изв. вузов. Химия и химическая технология. 2013. Т. 56. № 6. С. 45.
  18. Kumara R., Sinhaa A., Mondal G.C. et al. // Arab. J. Chem. 2020. V. 13. I. 1. P. 134. https://doi.org/10.1016/j.arabic.2017.03.001
  19. Fan J.H., Wang H.W., Wu D.L. et al. // J chem technol biot. 2011. V. 86. I. 10. P. 1295. https://doi.org/10.1002/jctb.2672
  20. Oh S.Y., Cha D.K., Kim B.J. et al. // Environ. Toxicol. Chem. 2005. V. 24. I. 11. P. 2812.
  21. Prabakar S., Mayakannan M., Vinoth E. // NanoNEXT. 2021. V. 2. I. 1. P. 1. https://doi.org/10.34256/nnxt2111
  22. Ильин А.А. // ЖРХО им. Д.И. Менделеева. 2019. T. 63. № 2. С. 37. https://doi.org/10.6060/rcj.2019632.7
  23. Китайгородский А.И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. М.: Книга по Требованию, 2013. 590 с.
  24. Румянцев Р.Н., Ильин А.А., Ильин А.П. и др. // Изв. вузов. Химия и химическая технология. 2014. Т. 57. № 7. С. 80.
  25. Шабашов В.А., Литвинов А.В., Мукосеев А.Г. и др. // ФММ. 2004. Т. 98. № 6. С. 38.
  26. Ломаева С.Ф., Маратканова А.Н., Немцова О.М. и др. // Химия в интересах устойчивого развития. 2007. № 2. С. 103.
  27. Чекин В.В. Мессбауэровская спектроскопия сплавов железа, золота и олова. М.: Энергоиздат., 1981. 107 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).