THERMODYNAMICS OF Cu(II) SORPTION FROM AQUEOUS SOLUTIONS BY HYDROGEL SORBENTS BASED ON CROSSLINKED CHITOSAN
- Authors: Gabrin V.A1, Nikiforova T.E1
-
Affiliations:
- Ivanovo State University of Chemistry and Technology
- Issue: Vol 99, No 11 (2025)
- Pages: 1635–1640
- Section: CURRENT PROBLEMS IN THE THEORY AND PRACTICE OF HETEROGENEOUS CATALYSTS AND ADSORBENTS
- Submitted: 28.01.2026
- Published: 15.11.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/378252
- DOI: https://doi.org/10.7868/S3034553725110041
- ID: 378252
Cite item
Abstract
The dependence of the sorption characteristics of heavy- metal sorbents based on crosslinked chitosan hydrogels on the temperature parameters of the heterogeneous system "aqueous copper(II) sulfate solution - chitosan-based sorbent" was studied in detail. Using experimental data on the static sorption of Cu(II) ions and applying various approaches and models (Langmuir, Freundlich, and the Theory of Volume Filling of Micropores), the key sorption parameters were calculated. Based on the calculated thermodynamic potentials, it was established that the sorption of copper cations is an endothermic process characterized by a sequential, thermodynamically spontaneous filling of the sorption volume of the interfacial surface and the sorption-active sites of the investigated sorbents.
Keywords
About the authors
V. A Gabrin
Ivanovo State University of Chemistry and Technology
Email: gabrinvictoria@gmail.com
Ivanovo, Ivanovo Region, Russia
T. E Nikiforova
Ivanovo State University of Chemistry and TechnologyIvanovo, Ivanovo Region, Russia
References
- Kyнин A.B., Ильин A.A., Морозов Л.H., и др. // Изв. ВУЗов. Серия: Химия и химическая технология. 2023. T. 66. N 7. C. 132. doi: 10.6060/ivkkt.20236607.6849.
- Zamora-Ledezma C. // Environ Technol Innov. 2021. V. 22. P. 101504.
- Upadhyay U., Sreedhar I., Singh S.A., et al. // Carbohydrate Polymers. 2021. V. 251. P. 117000.
- Маслова М.B., Евстропова П.E. // Журн. физ. химии. 2021. T. 95. N 10. C. 1585. doi: 10.31857/S0044453721100198.
- Дейко Г.C., Кравцов Л.A., Давшан Н.A. и др. // Там же. 2022. T. 96. N 8. C. 1180. doi: 10.31857/S0044453722080064.
- Никифорова Т.E., Габрин В.A., Разговоров П.B. // Физ.-хим. поверх. и защита мат. 2023. T. 59. N 3. C. 231. doi: 10.31857/S0044185623700298.
- Kayan G.O., Kayan A. // J. of Polymers and the Environment. 2021. V. 29. P. 3477-3496.
- Lin Z., Yang Y., Liang Z., et al. // Polymers. 2021. V. 13. P. 13111891.
- Fan X., Wang X., Cai Y., et al. // J. of Hazardous Materials. 2022. V. 423. P. 127191.
- Ghiorghita C.-A., Dinu M.V., Lazar M.M., et al. // Molecules. 2022. V. 27. N 23. P. 8574.
- Dinu M.V., Humelnicu D., Lazar M.M. // Gels. 2021. V. 7. N 3. P. 103.
- Мударисова Р.Х., Сагитова А.Ф., Куковинец О.С. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1188. doi: 10.31857/S0044453722080179.
- Omer A.M., Dey R., Eltawel A.S., et al. // 2022. V. 15. N2. P. 103543.
- Brião G. de V., Andrade de J., Silva da M.G.C., et al. // Environmental Chemistry Letters. 2020. V. 18. P. 1145.
- Chen J., Zhang H., Xue J., et al. // Marine Pollution Bulletin. 2022. V. 181. P. 113923.
- Chi H., Wang S., Li T., et al. // Chemosphere. 2021. V. 263. P. 128380.
- Rahaman M.H., Islam M.A., Islam M.M., et al. // Current Research in Green and Sustainable Chemistry. 2021. V. 4. P. 100119.
- da Silva Alves D.S., Healy B., Pinto L.A. d. A., et al. // Molecules. 2021. V. 26. P. 26030594.
- Pavithra S., Thandapani G., Alkhamis H.H., et al. // Chemosphere. 2021. V. 271. P. 129415.
- Габрин В.А., Никифорова Т.Е. // Физикохимия поверхности и защита материалов. 2023. Т. 59. № 4. С. 364. doi: 10.31857/S0044185623700535.
- Fufaeva V.A., Nikiforova T.E. // Intern. J. of Advanced Studies in Medicine and Biomedical Sciences. 2020. N2. C. 3.
- Fufaeva V.A., Nikiforova T.E. // Protection of Metals and Physical Chemistry of Surfaces. 2022. V. 58. P. 262.
- Фуфаева В.A., Никифорова Т.E., Разговоров П.B. и др. // Экология и промышленность России. 2022. T. 26. N2. C. 22. doi: 10.18412/1816-0395-2022-12-22-27.
Supplementary files


