ENHANCING THE ADSORPTION EFFICIENCY OF CATIONIC DYES ON MECHANOACTIVATED MONTMORILLONITE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The adsorption of the cationic dyes rhodamine B (RhB) and methylene blue (MB) was investigated on natural montmorillonite (MM) and its mechanoactivated form (MAMM). Mechanical modification of MM was carried out in a planetary mill using zirconia grinding media (MM-to-media mass ratio 7.5:1) at a rotor speed of 1500 rpm for 3 minutes. The adsorption efficiency increased significantly for both dyes when using MAMM compared to MM: by 26.9% for RhB and 29.8% for MB. A comparison of the physicochemical properties of the adsorbents was performed using small- and wide-angle X-ray diffraction, solid-state NMR (29Si, 27Al, 23Na), scanning electron microscopy, IR spectroscopy, TG-DSC thermal analysis, low-temperature nitrogen adsorption/desorption, and static laser light scattering. The improved adsorption properties of MAMM are attributed to structural and textural changes caused by mechanoactivation, which leads to delamination of aluminosilicate layers, enhanced pore characteristics, and a reduction in clay particle size in aqueous dispersions. Additionally, MAMM retains a high degree of crystallinity of aluminosilicate layers, exhibits partial dehydroxylation, and shows a slight shift of the ζ-potential toward less negative values.

About the authors

M. F Butman

Ivanovo State University of Chemistry and Technology

Email: butman@isuct.ru
Ivanovo, Russia

N. L Ovchinnikov

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

D. V Yashin

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

N. E Gordina

Ivanovo State University of Chemistry and Technology

Ivanovo, Russia

A. S Mazur

Saint Petersburg State University

Saint Petersburg, Russia

M. G Shelyapina

Saint Petersburg State University

Saint Petersburg, Russia

References

  1. Chien J.R.C., Ganesan J.J. // Advancing Sustainable Approaches for the Removal and Recycling of Toxic Dyes from the Aquatic Environment. 2024. http://dx.doi.org/10.5772/intechopen.1005584
  2. Feng Y., Yang L., Liu J., Logan B.E. // Environ. Sci.: Water Res. Technol. 2016. V. 2. № 5. P. 800.
  3. Gushchin A.A., Grinevich V.I., Kvitkova E.Y. et al. // ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2023. V. 66. № 7. P. 120.
  4. Qian F., Sun X., Liu Y. // Chem. Eng. J. 2013. V. 214. P. 112.
  5. Liu Z., Smith S.R. // Waste Biomass Valori. 2021. V. 12. P. 4185.
  6. Hermosilla D., Merayo N., Gascó A., Blanco Á. // Environ. Sci. Pollut. Res. 2014. V. 22. P. 168.
  7. Kurt E., Koseoglu-Imer D.Y., Dizge N., et al. // Desalination. 2012. V. 302. P. 24.
  8. Dutta S., Gupta B., Srivastava S.K., Gupta A.K. // Mater. Adv. 2021. V. 2. № 14. P. 4497.
  9. Zhou Y., Lu J., Zhou Y., Liu Y. // Environ. Pollut. 2019. V. 252. P. 352.
  10. Yahya M.A., Al-Qodah Z., Ngah C.Z. // Renew. Sustain. Energy Rev. 2015. V. 46. P. 218.
  11. Adeyemo A.A., Adeoye I.O., Bello O.S. // Appl. Water Sci. 2017. V. 7. № 2. P. 543.
  12. Ouaddari H., Abbou B., Lebkiri I., et al. // Chem. Phys. Impact. 2024. V. 8. P. 100405.
  13. Brigatti M.F., Galan E., Theng B.K.G. Structures and mineralogy of clay minerals // Developments in Clay Science, Elsevier. 2006. V. 1. P. 19.
  14. Emmerich K., Wolters F., Kahr G., Lagaly G. // Clay Clay Miner. 2009. V. 57. P. 104.
  15. Do Nascimento G. (ed.). Recent Advances in Montmorillonite. BoD–Books on Demand, 2024.
  16. Kovalchuk I. // Eng. 2023. V. 4. P. 2141.
  17. Ewis D., Ba-Abbad M.M., Benamor A., El-Naas M.H. // Appl. Clay Sci. 2022. V. 229. P. 106686.
  18. Valera-Zaragoza M., Agüero-Valdez D., Lopez-Medina M., et al. // Adv. Powder Technol. 2021. V. 32. № 2. P. 591.
  19. Baki V.A., Ke X., Heath A., et al. // Cem. Concr. Res. 2022. V. 162. P. 106962.
  20. Xia M., Jiang Y., Zhao L., et al. // Colloids Surf. A: Physicochem. Eng. Asp. 2010. V. 356. № 1—3. P. 1.
  21. Marsh A.T.M., Krishnan S., Bernal S.A. // Cem. Concr. Res. 2024. V. 181. P. 107546.
  22. Ramadan A.R., Esawi A.M.K., Gawad A.A. // Appl. Clay Sci. 2010. V. 47. № 3—4. P. 196.
  23. Kornilovych B.Y. Structure and Surface Properties of Mechanochemically Activated Silicates and Carbonates; K.: Naukova Dumka, 1994. 127 p.
  24. Tole I., Habermehl-Cwirzen K., Cwirzen A. // Mineral. Petrol. 2019. V. 113. P. 449.
  25. Vdović N., Jurina I., Škapin S.D., Sondi I. // Appl. Clay Sci. 2010. V. 48. № 4. P. 575.
  26. Kovalchuk I., Zakutevskyy O., Sydorchuk V., et al. // Eng. 2023. V. 4. P. 2812.
  27. Hrachová J., Komadel P., Fajnor V.Š. // Mater. Lett. 2007. V. 61. № 16. P. 3361.
  28. Novikau R., Lujaniene G. // J. Environ. Manag. 2022. V. 309. P. 114685.
  29. Sun W., Li J., Li H., et al. // Chemosphere. 2022. V. 296. P. 133962.
  30. Sun W., Zhang T., Li J., Zhu X. // Chemosphere. 2023. V. 321. P. 138114.
  31. Zango Z.U., Garba A., Garba Z.N., et al. // Sustainability. 2022. V. 14. P. 16441.
  32. Espaça V.A.A., Sarkar B., Biswas B., et al. // Environ. Technol. Innov. 2019. V. 13. P. 383.
  33. Sarkar A., Mushahary N., Basumatary F., et al. // J. Environ. Chem. Eng. 2024. V. 12. № 3. P. 112519.
  34. Наседкин В.В. Даш-Салахлинское месторождение бентонита (становление и перспективы развития). М.: ГЕОС, 2008. 85 с. c.
  35. Лесив Е.М., Жоголева Н.Е. // Литейное производство. 2003. № 2. С. 22.
  36. Tagiev D.B., Golubeva O. Yu., Mamedova S.A., et al. // Glass Phys. Chem. 2022. V. 48. Ne . 2. P. 140.
  37. Kalinkin A.M., Politov A.A., Kalinkina E.V., et al. // Khim. Interesah Ustoich. Razvit. 2006. V. 14. P. 357.
  38. Gao R., Zhao Y., Chen L., et al. // Sep. Purif. Technol. 2023. V. 306. P. 122730.
  39. Takahashi T., Ohkubo T., Suzuki K., Ikeda Y. // Microporous Mesoporous Mater. 2007. V. 106. P. 284.
  40. De Jong B.H.W.S., Van Hoek J., Veeman W.S., Manson D.V. // Am. Mineral. V. 72. Ne 11-12. P. 1195.
  41. Shelyapina M.G., Yocupicio-Gaxiola R.I., Zhelezniak I.V., et al. // Molecules. 2020. V. 25. Ne 20. P. 4678.
  42. Pustovgar E., Sangodkar R.P., Andreev A.S et al. // Nat. Commun. 2016. V. 7. Ne 1. P. 10952.
  43. Garg N., Skibsted J. // J. Phys. Chem. C. 2014. V. 118. Ne 21. P. 11464.
  44. Drachman S.R., Roch G.E., Smith M.E. // Solid State Nucl. Magn. Reson. 1997. V. 9. Ne 2-4. P. 257.
  45. Li S., Zheng A., Su Y., et al. // Phys. Chem. Chem. Phys., 2010. V. 12. Ne 15. P. 3895.
  46. Katsiotis M.S., Fardis M., Al Wahedi Y., et al. // J. Phys. Chem. C. 2015. V. 119. Ne 6. P. 3428.
  47. Ohkubo T., Saito K., Kanehashi K., Ikeda Y. // Sci. Technol. Adv. Mater. 2004. V. 5. Ne 5-6. P. 693.
  48. Navratilova Z., Wojtowicz P., Vaculikova L., Sugarkova V. // Acta Geodyn. Geomater. 2007. V. 4. Ne 3. P. 59.
  49. Болдырев А.И. Инфракрасные спектры минералов. M.: Недра, 1976. 198 c.
  50. Sing K.S.W., Everett D.H., Haul R.A.W., et al. // Pure Appl. Chem. 1985. V. 57. Ne 4. P. 603.
  51. Delgado A., Gonzalez-Caballero F., Bruque J.M. // J. Colloid Interface Sci. 1986. V. 113. Ne 1. P. 203.
  52. Bekri-Abbes I., Srasra E. // J. Alloys Compd. 2016. V. 671. P. 34.
  53. Nogueira F.G., Lopes J.H., Silva A.C., et al. // Appl. Clay Sci. 2009. V. 43. Ne 2. P. 190.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).