CHARGE INSTABILITY OF LIQUID CONDUCTIVE ELLIPSOIDAL DROPLETS DURING ELECTROSPRAY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The manifestations of instability in liquid droplets containing charged macroions relative to the Rayleigh limit are considered. It was found that beyond the Rayleigh limit, droplets become unstable and form structures with distinct features. Using computer modeling, the development of charge instability is presented. The effect of the instability mechanism on the breakup of charged droplets during electrospray is examined. The stability of charged conductive droplets with ellipsoidal shapes is investigated, highlighting the characteristics of ellipsoidal deformations and the dependence of surface force density on various values of the Rayleigh parameter.

About the authors

Yu. V Samukhina

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Email: juliesam2008@mail.ru
Moscow, Russia

A. K Buryak

Frumkin Institute of Physical Chemistry and Electrochemistry, RAS; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

References

  1. Schroder D. // Accounts of Chemical Research. 2012. № 45 (9). P. 1521.
  2. Conrotto P., Souchelnytskyi S. // Exp. Oncol. 2008. V. 30. № 3. P. 171.
  3. McShane A. J., Bunch D.R., Wang S. // Clinica Chimica Acta. 2016. V. 454. P. 1.
  4. Haouala A. // J. of Chromatography B. 2009. V. 877. № 22. P. 1982.
  5. Kebarle P., Peschke M. // Analytica Chimica Acta. 2000. V. 406. № 1. P. 11.
  6. Taylor G. // Proceeding of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1964. № 1382. P. 383.
  7. Kuo-Yen Li, Haohua Tu, and Asit K. // Langmuir. 2005. V. 21. P. 3786.
  8. Tang K., Smith R. // J. Am. Soc. Mass. Spectrom. 2001. № 12 (3). P. 343.
  9. Gomez, A., Tang, K. // Phys. Fluids. 1994. V. 6. P. 404.
  10. Samukhina Yu. V., Matyushin D.D., Polyakov P.A., Buryak A.K. // Colloid Journal. 2021. V. 83. No. 4. P. 483.
  11. Lebedev A.T., Zaikin // J. of Analyt. Chemistry. 2008. V. 63. № 12. P. 1128.
  12. Bailey A.G. // Sci. Prog. 1974. V. 61. № 244. P. 555.
  13. Inculet I.I., Floryan J.M., Haywood R.G. // IEEE Trans. Ind. Appl. 1992. V. 28. № 5. P. 1203.
  14. Chen C.H., Saville D.A., Aksay I.A. // Appl. Phys. Letters. 2006. V. 88. № 3154104. P. 1.
  15. Shiryaeva S.O., Kornienko D.O., Volkova M.V. // Surface Engineering and Applied Electrochemistry. 2009. V. 45. № 4. P. 272.
  16. Shiryaeva S.O. // Technical Physics. The Russian Journal of Applied Physics. 2006. V. 51. № 11. P. 1431.
  17. Belonozhko D.F., Grigor’ev A.I. // Ibid. 2000. V. 45. № 8. P. 1001.
  18. Shchukin S.I., Grigor’ev A.I. // Ibid. 2000. V. 45. № 4. P. 381.
  19. Yarin A.L., Brenn G., Kastner O. // J. Fluid.Mech. 1999. V. 399. P. 151.
  20. Dupac M., Beale D.G., Overflat R.A. // Nonlinear Dinamic. 2005. V. 42. P. 25.
  21. Shiryaeva S.O. // Technical Physics. The Russian Journal of Applied Physics. 2014. V. 59. № 6. P. 813.
  22. Grigor’ev A.I., Zharov A.N., Shiryaeva S.O. // Ibid. 2005. V. 50. № 8. P. 1006.
  23. Grigor’ev A.I. // Ibid. 2009. V. 54. № 4. P. 482.
  24. Tsamopolous J.A., Akylas T.R., Brown R.A. // Proc. R. Soc. London. 1985. V. 401. № 1820. P. 67.
  25. O’Konski Ch.Т., Harris F.E. // J. Phys. Chem. 1957. V. 61. № 9. P. 1172.
  26. Winterhalter M., Helfrich W. // J. Coll. Int. Sci. 1988. V. 122. № 2. P. 583.
  27. Basaran O.A., Scriven L.E. // Phys. Fluids A. 1989. V. 1. № 5. P. 799.
  28. Duft D., Lebbeus H., Huber B.A. // Phys. Rev. Lett. 2002. V. 89(8). P. 1.
  29. Grimm R.L., Beauchamp J.L. // J. Phys. Chem. B. 2005. V. 109. P. 8244.
  30. Duft D., Achtzehn T., Muller R. et al. // Nature. 2003. V. 421. P. 128.
  31. Mansell E.R., Ziegler C.I., and Bruning Z.C. // J. Atmos. Sci. 2010. V. 67. № 1. P. 171.
  32. Styliani Consta // J. Phys. Chem. B. 2010. V. 114. P. 5263.
  33. Yu.V. Samukhina and A.K. Buryak // Rus. J. of Phys. Chem. A. 2023. V. 97. № . 6. P. 1253.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).