ADSORPTION OF A NEW COLLECTOR 4-(1-NAFTHYL-AZO)NAFTOL-1 ON CHALCOPYRITE
- Authors: Gogolishvili V.O.1, Gusev V.Y.1
-
Affiliations:
- Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences – Branch of the Perm Federal Research Center, Ural Branch of RAS
- Issue: Vol 99, No 10 (2025)
- Pages: 1570-1577
- Section: PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
- Submitted: 27.01.2026
- Published: 15.10.2025
- URL: https://journals.rcsi.science/0044-4537/article/view/376385
- DOI: https://doi.org/10.7868/S3034553725100148
- ID: 376385
Cite item
Abstract
Results of studying the adsorption process of a potential collector reagent 4-(1-naphthylazo)naftol-1 on chalcopyrite — a monomineral of sulfide copper-nickel ore — are presented. The dependence of adsorption on solution pH, as well as kinetic and thermodynamic parameters of adsorption at 296, 299, 302, 305, and 315 K were determined. The adsorption rate constants of the reagent on chalcopyrite were calculated using pseudo-first-order and pseudo-second-order kinetic models. Adsorption isotherms at all investigated temperatures were plotted using Langmuir and Freundlich equations, and the constants for each model were determined. Using Langmuir adsorption constants at different temperatures, changes in enthalpy, entropy, and Gibbs free energy were calculated. The thermal effect values indicate that the adsorption of 4-(1-naphthylazo)naftol-1 on chalcopyrite is predominantly chemisorption. Positive enthalpy and negative Gibbs free energy values suggest that the adsorption process is endothermic and spontaneous. Contact angles on the chalcopyrite surface before and after treatment with 4-(1-naphthylazo)naftol-1 solution were measured, showing that the reagent exhibits the highest hydrophobizing ability toward chalcopyrite at pH 10.0.
About the authors
V. O. Gogolishvili
Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences – Branch of the Perm Federal Research Center, Ural Branch of RAS
Author for correspondence.
Email: viktoria.gogolishvili@yandex.ru
ORCID iD: 0000-0003-4963-3098
Perm, Russia
V. Yu. Gusev
Institute of Technical Chemistry, Ural Branch of the Russian Academy of Sciences – Branch of the Perm Federal Research Center, Ural Branch of RAS
Email: viktoria.gogolishvili@yandex.ru
ORCID iD: 0000-0003-2278-2106
Perm, Russia
References
- Duan H., Huang X., Cao X. et al. // Miner. Eng. 2021. V. 172. P. 1. doi: 10.1016/j.mineng.2021.107178
- Liu G., Xiao J., Ren H., Zhong H. // J. Ind. Eng. Chem. 2015. V. 21. P. 1306. doi: 10.1016/j.jiec.2014.06.003
- Li F., Huang Y., Zhang Y. et al. Miner. Eng. 2021. V. 172. P. 1. doi: 10.1016/j.mineng.2021.107164
- He S., Huang Y., Wang C. et al. // Surf. Interfaces. 2023. V. 36. P. 1. doi: 10.1016/j.surfin.2022.102509
- Jia Y., Huang X., Cao Z. et al. // Appl. Surf. Sci. 2019. V. 484. P. 864. doi: 10.1016/j.apsusc.2019.03.323
- Гусев В.Ю., Радушев А.В., Чеканова Л.Г. и др. // ЖПХ. 2018. Т. 91. № 4. С. 503. Gusev V.Y., Radushev A.V., Chekanova L.G. et al. // Russ. J. Appl. Chem. 2018. V. 91. № 4. P. 573‒582. doi: 10.1134/S1070427218040079
- Шубов Л.Я., Иванков С.И., Щеглова Н.К. Флотационные реагенты в процессах обогащения минерального сырья. Справочник: В 2 кн. М.: Недра, 1990. 400 с.
- Awale A.G., Gholse S.B., Utale P.S. // Res. J. Chem. Sci. 2013. V. 3. № 10. Р. 81.
- Крижановская О.О., Синяева Л.А., Карпов С.И. и др. // Сорбционные и хроматографические процессы. 2014. Т. 14. № 5. С. 784.
- Михеева Е.В. Адсорбция на однородной твердой поверхности. Уравнение Лэнгмюра. Томск: Издво Томск. политех. ун-та, 2011. 36 с.
- Li Z., Qi M., Tu C. et al. // Appl. Surf. Sci. 2017. V. 425. P. 765. doi: 10.1016/j.apsusc.2017.07.027
- Aksu Z. // Process Biochem. 2002. V. 38. № 1. P. 89. doi: 10.1016/S0032-9592(02)00051-1
- Machado F.M., Bergmann C.P., Lima E.C. et al. // Phys. Chem. Chem. Phys. 2012. V. 14. № 31. P. 11139. doi: 10.1039/c2cp41475a
- Макаревич Н.А. Теоретические основы адсорбции. Архангельск: Изд-во САФУ, 2015. 362 с.
Supplementary files


